Step |
Hyp |
Ref |
Expression |
1 |
|
cphipcj.h |
β’ , = ( Β·π β π ) |
2 |
|
cphipcj.v |
β’ π = ( Base β π ) |
3 |
|
cphip0l.z |
β’ 0 = ( 0g β π ) |
4 |
|
cphphl |
β’ ( π β βPreHil β π β PreHil ) |
5 |
|
eqid |
β’ ( Scalar β π ) = ( Scalar β π ) |
6 |
|
eqid |
β’ ( 0g β ( Scalar β π ) ) = ( 0g β ( Scalar β π ) ) |
7 |
5 1 2 6 3
|
ip0r |
β’ ( ( π β PreHil β§ π΄ β π ) β ( π΄ , 0 ) = ( 0g β ( Scalar β π ) ) ) |
8 |
4 7
|
sylan |
β’ ( ( π β βPreHil β§ π΄ β π ) β ( π΄ , 0 ) = ( 0g β ( Scalar β π ) ) ) |
9 |
|
cphclm |
β’ ( π β βPreHil β π β βMod ) |
10 |
5
|
clm0 |
β’ ( π β βMod β 0 = ( 0g β ( Scalar β π ) ) ) |
11 |
9 10
|
syl |
β’ ( π β βPreHil β 0 = ( 0g β ( Scalar β π ) ) ) |
12 |
11
|
adantr |
β’ ( ( π β βPreHil β§ π΄ β π ) β 0 = ( 0g β ( Scalar β π ) ) ) |
13 |
8 12
|
eqtr4d |
β’ ( ( π β βPreHil β§ π΄ β π ) β ( π΄ , 0 ) = 0 ) |