Step |
Hyp |
Ref |
Expression |
1 |
|
nmsq.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
nmsq.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
5 |
3 4
|
cphsubrg |
⊢ ( 𝑊 ∈ ℂPreHil → ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( SubRing ‘ ℂfld ) ) |
6 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
7 |
6
|
subrgss |
⊢ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( SubRing ‘ ℂfld ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ ℂ ) |
8 |
5 7
|
syl |
⊢ ( 𝑊 ∈ ℂPreHil → ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ ℂ ) |
9 |
8
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ ℂ ) |
10 |
|
cphphl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) |
11 |
3 2 1 4
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
12 |
10 11
|
syl3an1 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
13 |
9 12
|
sseldd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ℂ ) |