Metamath Proof Explorer


Theorem cphipcl

Description: An inner product is a member of the complex numbers. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Hypotheses nmsq.v 𝑉 = ( Base ‘ 𝑊 )
nmsq.h , = ( ·𝑖𝑊 )
Assertion cphipcl ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ℂ )

Proof

Step Hyp Ref Expression
1 nmsq.v 𝑉 = ( Base ‘ 𝑊 )
2 nmsq.h , = ( ·𝑖𝑊 )
3 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
4 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
5 3 4 cphsubrg ( 𝑊 ∈ ℂPreHil → ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( SubRing ‘ ℂfld ) )
6 cnfldbas ℂ = ( Base ‘ ℂfld )
7 6 subrgss ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∈ ( SubRing ‘ ℂfld ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ ℂ )
8 5 7 syl ( 𝑊 ∈ ℂPreHil → ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ ℂ )
9 8 3ad2ant1 ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) ⊆ ℂ )
10 cphphl ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil )
11 3 2 1 4 ipcl ( ( 𝑊 ∈ PreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
12 10 11 syl3an1 ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
13 9 12 sseldd ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ℂ )