Step |
Hyp |
Ref |
Expression |
1 |
|
cphipcj.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
2 |
|
cphipcj.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
2 1
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ℂ ) |
4 |
|
absval |
⊢ ( ( 𝐴 , 𝐵 ) ∈ ℂ → ( abs ‘ ( 𝐴 , 𝐵 ) ) = ( √ ‘ ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) ) ) |
5 |
3 4
|
syl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( abs ‘ ( 𝐴 , 𝐵 ) ) = ( √ ‘ ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) ) ) |
6 |
5
|
oveq1d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) = ( ( √ ‘ ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) ) ↑ 2 ) ) |
7 |
3
|
cjcld |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ∈ ℂ ) |
8 |
3 7
|
mulcld |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) ∈ ℂ ) |
9 |
8
|
sqsqrtd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( √ ‘ ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) ) ↑ 2 ) = ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) ) |
10 |
1 2
|
cphipcj |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∗ ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) ) |
11 |
10
|
oveq2d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) = ( ( 𝐴 , 𝐵 ) · ( 𝐵 , 𝐴 ) ) ) |
12 |
6 9 11
|
3eqtrrd |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 , 𝐵 ) · ( 𝐵 , 𝐴 ) ) = ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) ) |