Metamath Proof Explorer


Theorem cphipipcj

Description: An inner product times its conjugate. (Contributed by NM, 23-Nov-2007) (Revised by AV, 19-Oct-2021)

Ref Expression
Hypotheses cphipcj.h , = ( ·𝑖𝑊 )
cphipcj.v 𝑉 = ( Base ‘ 𝑊 )
Assertion cphipipcj ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( ( 𝐴 , 𝐵 ) · ( 𝐵 , 𝐴 ) ) = ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) )

Proof

Step Hyp Ref Expression
1 cphipcj.h , = ( ·𝑖𝑊 )
2 cphipcj.v 𝑉 = ( Base ‘ 𝑊 )
3 2 1 cphipcl ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ℂ )
4 absval ( ( 𝐴 , 𝐵 ) ∈ ℂ → ( abs ‘ ( 𝐴 , 𝐵 ) ) = ( √ ‘ ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) ) )
5 3 4 syl ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( abs ‘ ( 𝐴 , 𝐵 ) ) = ( √ ‘ ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) ) )
6 5 oveq1d ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) = ( ( √ ‘ ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) ) ↑ 2 ) )
7 3 cjcld ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ∈ ℂ )
8 3 7 mulcld ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) ∈ ℂ )
9 8 sqsqrtd ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( ( √ ‘ ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) ) ↑ 2 ) = ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) )
10 1 2 cphipcj ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( ∗ ‘ ( 𝐴 , 𝐵 ) ) = ( 𝐵 , 𝐴 ) )
11 10 oveq2d ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( ( 𝐴 , 𝐵 ) · ( ∗ ‘ ( 𝐴 , 𝐵 ) ) ) = ( ( 𝐴 , 𝐵 ) · ( 𝐵 , 𝐴 ) ) )
12 6 9 11 3eqtrrd ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉𝐵𝑉 ) → ( ( 𝐴 , 𝐵 ) · ( 𝐵 , 𝐴 ) ) = ( ( abs ‘ ( 𝐴 , 𝐵 ) ) ↑ 2 ) )