Step |
Hyp |
Ref |
Expression |
1 |
|
cphipfval.x |
⊢ 𝑋 = ( Base ‘ 𝑊 ) |
2 |
|
cphipfval.p |
⊢ + = ( +g ‘ 𝑊 ) |
3 |
|
cphipfval.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
4 |
|
cphipfval.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
5 |
|
cphipfval.i |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
6 |
|
cphipval2.m |
⊢ − = ( -g ‘ 𝑊 ) |
7 |
|
cphipval2.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
8 |
|
cphipval2.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
9 |
|
simpl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) → 𝑊 ∈ ℂPreHil ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝑊 ∈ ℂPreHil ) |
11 |
|
cphngp |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp ) |
12 |
11
|
adantr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) → 𝑊 ∈ NrmGrp ) |
13 |
|
ngpgrp |
⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ Grp ) |
14 |
12 13
|
syl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) → 𝑊 ∈ Grp ) |
15 |
1 2
|
grpcl |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 + 𝐵 ) ∈ 𝑋 ) |
16 |
14 15
|
syl3an1 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 + 𝐵 ) ∈ 𝑋 ) |
17 |
1 5 4
|
nmsq |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 + 𝐵 ) ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) ) |
18 |
10 16 17
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) ) |
19 |
|
simp2 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐴 ∈ 𝑋 ) |
20 |
|
simp3 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) |
21 |
5 1 2 10 19 20 19 20
|
cph2di |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) ) |
22 |
18 21
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) ) |
23 |
1 6
|
grpsubcl |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 − 𝐵 ) ∈ 𝑋 ) |
24 |
14 23
|
syl3an1 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 − 𝐵 ) ∈ 𝑋 ) |
25 |
1 5 4
|
nmsq |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 − 𝐵 ) ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 − 𝐵 ) , ( 𝐴 − 𝐵 ) ) ) |
26 |
10 24 25
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 − 𝐵 ) , ( 𝐴 − 𝐵 ) ) ) |
27 |
5 1 6 10 19 20 19 20
|
cph2subdi |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 − 𝐵 ) , ( 𝐴 − 𝐵 ) ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) − ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) ) |
28 |
26 27
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ↑ 2 ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) − ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) ) |
29 |
22 28
|
oveq12d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ↑ 2 ) ) = ( ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) − ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) − ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) ) ) |
30 |
1 5
|
reipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 , 𝐴 ) ∈ ℝ ) |
31 |
30
|
adantlr |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 , 𝐴 ) ∈ ℝ ) |
32 |
31
|
recnd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 , 𝐴 ) ∈ ℂ ) |
33 |
32
|
3adant3 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 , 𝐴 ) ∈ ℂ ) |
34 |
1 5
|
reipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 , 𝐵 ) ∈ ℝ ) |
35 |
34
|
adantlr |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 , 𝐵 ) ∈ ℝ ) |
36 |
35
|
recnd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 , 𝐵 ) ∈ ℂ ) |
37 |
36
|
3adant2 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 , 𝐵 ) ∈ ℂ ) |
38 |
33 37
|
addcld |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ∈ ℂ ) |
39 |
1 5
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 , 𝐵 ) ∈ ℂ ) |
40 |
9 39
|
syl3an1 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 , 𝐵 ) ∈ ℂ ) |
41 |
1 5
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 , 𝐴 ) ∈ ℂ ) |
42 |
9 41
|
syl3an1 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐵 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐵 , 𝐴 ) ∈ ℂ ) |
43 |
42
|
3com23 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 , 𝐴 ) ∈ ℂ ) |
44 |
40 43
|
addcld |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ∈ ℂ ) |
45 |
38 44 44
|
pnncand |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) − ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) − ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) ) = ( ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) ) |
46 |
29 45
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ↑ 2 ) ) = ( ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) ) |
47 |
14
|
3ad2ant1 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 𝑊 ∈ Grp ) |
48 |
|
cphlmod |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod ) |
49 |
48
|
adantr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) → 𝑊 ∈ LMod ) |
50 |
49
|
adantr |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐵 ∈ 𝑋 ) → 𝑊 ∈ LMod ) |
51 |
|
simplr |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐵 ∈ 𝑋 ) → i ∈ 𝐾 ) |
52 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐵 ∈ 𝑋 ) → 𝐵 ∈ 𝑋 ) |
53 |
1 7 3 8
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ i ∈ 𝐾 ∧ 𝐵 ∈ 𝑋 ) → ( i · 𝐵 ) ∈ 𝑋 ) |
54 |
50 51 52 53
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐵 ∈ 𝑋 ) → ( i · 𝐵 ) ∈ 𝑋 ) |
55 |
54
|
3adant2 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( i · 𝐵 ) ∈ 𝑋 ) |
56 |
1 2
|
grpcl |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( i · 𝐵 ) ∈ 𝑋 ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ 𝑋 ) |
57 |
47 19 55 56
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 + ( i · 𝐵 ) ) ∈ 𝑋 ) |
58 |
1 5 4
|
nmsq |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 + ( i · 𝐵 ) ) ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) = ( ( 𝐴 + ( i · 𝐵 ) ) , ( 𝐴 + ( i · 𝐵 ) ) ) ) |
59 |
10 57 58
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) = ( ( 𝐴 + ( i · 𝐵 ) ) , ( 𝐴 + ( i · 𝐵 ) ) ) ) |
60 |
5 1 2 10 19 55 19 55
|
cph2di |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 + ( i · 𝐵 ) ) , ( 𝐴 + ( i · 𝐵 ) ) ) = ( ( ( 𝐴 , 𝐴 ) + ( ( i · 𝐵 ) , ( i · 𝐵 ) ) ) + ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) ) ) |
61 |
59 60
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) = ( ( ( 𝐴 , 𝐴 ) + ( ( i · 𝐵 ) , ( i · 𝐵 ) ) ) + ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) ) ) |
62 |
1 6
|
grpsubcl |
⊢ ( ( 𝑊 ∈ Grp ∧ 𝐴 ∈ 𝑋 ∧ ( i · 𝐵 ) ∈ 𝑋 ) → ( 𝐴 − ( i · 𝐵 ) ) ∈ 𝑋 ) |
63 |
47 19 55 62
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 − ( i · 𝐵 ) ) ∈ 𝑋 ) |
64 |
1 5 4
|
nmsq |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 − ( i · 𝐵 ) ) ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 − ( i · 𝐵 ) ) ) ↑ 2 ) = ( ( 𝐴 − ( i · 𝐵 ) ) , ( 𝐴 − ( i · 𝐵 ) ) ) ) |
65 |
10 63 64
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 − ( i · 𝐵 ) ) ) ↑ 2 ) = ( ( 𝐴 − ( i · 𝐵 ) ) , ( 𝐴 − ( i · 𝐵 ) ) ) ) |
66 |
5 1 6 10 19 55 19 55
|
cph2subdi |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 − ( i · 𝐵 ) ) , ( 𝐴 − ( i · 𝐵 ) ) ) = ( ( ( 𝐴 , 𝐴 ) + ( ( i · 𝐵 ) , ( i · 𝐵 ) ) ) − ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) ) ) |
67 |
65 66
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝑁 ‘ ( 𝐴 − ( i · 𝐵 ) ) ) ↑ 2 ) = ( ( ( 𝐴 , 𝐴 ) + ( ( i · 𝐵 ) , ( i · 𝐵 ) ) ) − ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) ) ) |
68 |
61 67
|
oveq12d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝑁 ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 − ( i · 𝐵 ) ) ) ↑ 2 ) ) = ( ( ( ( 𝐴 , 𝐴 ) + ( ( i · 𝐵 ) , ( i · 𝐵 ) ) ) + ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) ) − ( ( ( 𝐴 , 𝐴 ) + ( ( i · 𝐵 ) , ( i · 𝐵 ) ) ) − ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) ) ) ) |
69 |
68
|
oveq2d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( i · ( ( ( 𝑁 ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 − ( i · 𝐵 ) ) ) ↑ 2 ) ) ) = ( i · ( ( ( ( 𝐴 , 𝐴 ) + ( ( i · 𝐵 ) , ( i · 𝐵 ) ) ) + ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) ) − ( ( ( 𝐴 , 𝐴 ) + ( ( i · 𝐵 ) , ( i · 𝐵 ) ) ) − ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) ) ) ) ) |
70 |
1 5
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( i · 𝐵 ) ∈ 𝑋 ∧ ( i · 𝐵 ) ∈ 𝑋 ) → ( ( i · 𝐵 ) , ( i · 𝐵 ) ) ∈ ℂ ) |
71 |
10 55 55 70
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( i · 𝐵 ) , ( i · 𝐵 ) ) ∈ ℂ ) |
72 |
33 71
|
addcld |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 , 𝐴 ) + ( ( i · 𝐵 ) , ( i · 𝐵 ) ) ) ∈ ℂ ) |
73 |
1 5
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑋 ∧ ( i · 𝐵 ) ∈ 𝑋 ) → ( 𝐴 , ( i · 𝐵 ) ) ∈ ℂ ) |
74 |
10 19 55 73
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 , ( i · 𝐵 ) ) ∈ ℂ ) |
75 |
1 5
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( i · 𝐵 ) ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( ( i · 𝐵 ) , 𝐴 ) ∈ ℂ ) |
76 |
10 55 19 75
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( i · 𝐵 ) , 𝐴 ) ∈ ℂ ) |
77 |
74 76
|
addcld |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) ∈ ℂ ) |
78 |
72 77 77
|
pnncand |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( ( 𝐴 , 𝐴 ) + ( ( i · 𝐵 ) , ( i · 𝐵 ) ) ) + ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) ) − ( ( ( 𝐴 , 𝐴 ) + ( ( i · 𝐵 ) , ( i · 𝐵 ) ) ) − ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) ) ) = ( ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) + ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) ) ) |
79 |
78
|
oveq2d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( i · ( ( ( ( 𝐴 , 𝐴 ) + ( ( i · 𝐵 ) , ( i · 𝐵 ) ) ) + ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) ) − ( ( ( 𝐴 , 𝐴 ) + ( ( i · 𝐵 ) , ( i · 𝐵 ) ) ) − ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) ) ) ) = ( i · ( ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) + ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) ) ) ) |
80 |
1 3 5 7 8
|
cphassir |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 , ( i · 𝐵 ) ) = ( - i · ( 𝐴 , 𝐵 ) ) ) |
81 |
1 3 5 7 8
|
cphassi |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( i · 𝐵 ) , 𝐴 ) = ( i · ( 𝐵 , 𝐴 ) ) ) |
82 |
80 81
|
oveq12d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) = ( ( - i · ( 𝐴 , 𝐵 ) ) + ( i · ( 𝐵 , 𝐴 ) ) ) ) |
83 |
82 82
|
oveq12d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) + ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) ) = ( ( ( - i · ( 𝐴 , 𝐵 ) ) + ( i · ( 𝐵 , 𝐴 ) ) ) + ( ( - i · ( 𝐴 , 𝐵 ) ) + ( i · ( 𝐵 , 𝐴 ) ) ) ) ) |
84 |
83
|
oveq2d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( i · ( ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) + ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) ) ) = ( i · ( ( ( - i · ( 𝐴 , 𝐵 ) ) + ( i · ( 𝐵 , 𝐴 ) ) ) + ( ( - i · ( 𝐴 , 𝐵 ) ) + ( i · ( 𝐵 , 𝐴 ) ) ) ) ) ) |
85 |
|
ax-icn |
⊢ i ∈ ℂ |
86 |
85
|
a1i |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → i ∈ ℂ ) |
87 |
|
negicn |
⊢ - i ∈ ℂ |
88 |
87
|
a1i |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → - i ∈ ℂ ) |
89 |
88 40
|
mulcld |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( - i · ( 𝐴 , 𝐵 ) ) ∈ ℂ ) |
90 |
86 43
|
mulcld |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( i · ( 𝐵 , 𝐴 ) ) ∈ ℂ ) |
91 |
89 90
|
addcld |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( - i · ( 𝐴 , 𝐵 ) ) + ( i · ( 𝐵 , 𝐴 ) ) ) ∈ ℂ ) |
92 |
86 91 91
|
adddid |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( i · ( ( ( - i · ( 𝐴 , 𝐵 ) ) + ( i · ( 𝐵 , 𝐴 ) ) ) + ( ( - i · ( 𝐴 , 𝐵 ) ) + ( i · ( 𝐵 , 𝐴 ) ) ) ) ) = ( ( i · ( ( - i · ( 𝐴 , 𝐵 ) ) + ( i · ( 𝐵 , 𝐴 ) ) ) ) + ( i · ( ( - i · ( 𝐴 , 𝐵 ) ) + ( i · ( 𝐵 , 𝐴 ) ) ) ) ) ) |
93 |
86 89 90
|
adddid |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( i · ( ( - i · ( 𝐴 , 𝐵 ) ) + ( i · ( 𝐵 , 𝐴 ) ) ) ) = ( ( i · ( - i · ( 𝐴 , 𝐵 ) ) ) + ( i · ( i · ( 𝐵 , 𝐴 ) ) ) ) ) |
94 |
86 88 40
|
mulassd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( i · - i ) · ( 𝐴 , 𝐵 ) ) = ( i · ( - i · ( 𝐴 , 𝐵 ) ) ) ) |
95 |
85 85
|
mulneg2i |
⊢ ( i · - i ) = - ( i · i ) |
96 |
|
ixi |
⊢ ( i · i ) = - 1 |
97 |
96
|
negeqi |
⊢ - ( i · i ) = - - 1 |
98 |
|
negneg1e1 |
⊢ - - 1 = 1 |
99 |
95 97 98
|
3eqtri |
⊢ ( i · - i ) = 1 |
100 |
99
|
oveq1i |
⊢ ( ( i · - i ) · ( 𝐴 , 𝐵 ) ) = ( 1 · ( 𝐴 , 𝐵 ) ) |
101 |
94 100
|
eqtr3di |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( i · ( - i · ( 𝐴 , 𝐵 ) ) ) = ( 1 · ( 𝐴 , 𝐵 ) ) ) |
102 |
86 86 43
|
mulassd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( i · i ) · ( 𝐵 , 𝐴 ) ) = ( i · ( i · ( 𝐵 , 𝐴 ) ) ) ) |
103 |
96
|
oveq1i |
⊢ ( ( i · i ) · ( 𝐵 , 𝐴 ) ) = ( - 1 · ( 𝐵 , 𝐴 ) ) |
104 |
102 103
|
eqtr3di |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( i · ( i · ( 𝐵 , 𝐴 ) ) ) = ( - 1 · ( 𝐵 , 𝐴 ) ) ) |
105 |
101 104
|
oveq12d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( i · ( - i · ( 𝐴 , 𝐵 ) ) ) + ( i · ( i · ( 𝐵 , 𝐴 ) ) ) ) = ( ( 1 · ( 𝐴 , 𝐵 ) ) + ( - 1 · ( 𝐵 , 𝐴 ) ) ) ) |
106 |
93 105
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( i · ( ( - i · ( 𝐴 , 𝐵 ) ) + ( i · ( 𝐵 , 𝐴 ) ) ) ) = ( ( 1 · ( 𝐴 , 𝐵 ) ) + ( - 1 · ( 𝐵 , 𝐴 ) ) ) ) |
107 |
106 106
|
oveq12d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( i · ( ( - i · ( 𝐴 , 𝐵 ) ) + ( i · ( 𝐵 , 𝐴 ) ) ) ) + ( i · ( ( - i · ( 𝐴 , 𝐵 ) ) + ( i · ( 𝐵 , 𝐴 ) ) ) ) ) = ( ( ( 1 · ( 𝐴 , 𝐵 ) ) + ( - 1 · ( 𝐵 , 𝐴 ) ) ) + ( ( 1 · ( 𝐴 , 𝐵 ) ) + ( - 1 · ( 𝐵 , 𝐴 ) ) ) ) ) |
108 |
40
|
mulid2d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 1 · ( 𝐴 , 𝐵 ) ) = ( 𝐴 , 𝐵 ) ) |
109 |
108
|
oveq1d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 1 · ( 𝐴 , 𝐵 ) ) + ( - 1 · ( 𝐵 , 𝐴 ) ) ) = ( ( 𝐴 , 𝐵 ) + ( - 1 · ( 𝐵 , 𝐴 ) ) ) ) |
110 |
|
addneg1mul |
⊢ ( ( ( 𝐴 , 𝐵 ) ∈ ℂ ∧ ( 𝐵 , 𝐴 ) ∈ ℂ ) → ( ( 𝐴 , 𝐵 ) + ( - 1 · ( 𝐵 , 𝐴 ) ) ) = ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) ) |
111 |
40 43 110
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 , 𝐵 ) + ( - 1 · ( 𝐵 , 𝐴 ) ) ) = ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) ) |
112 |
109 111
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 1 · ( 𝐴 , 𝐵 ) ) + ( - 1 · ( 𝐵 , 𝐴 ) ) ) = ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) ) |
113 |
112 112
|
oveq12d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 1 · ( 𝐴 , 𝐵 ) ) + ( - 1 · ( 𝐵 , 𝐴 ) ) ) + ( ( 1 · ( 𝐴 , 𝐵 ) ) + ( - 1 · ( 𝐵 , 𝐴 ) ) ) ) = ( ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) + ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) ) ) |
114 |
107 113
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( i · ( ( - i · ( 𝐴 , 𝐵 ) ) + ( i · ( 𝐵 , 𝐴 ) ) ) ) + ( i · ( ( - i · ( 𝐴 , 𝐵 ) ) + ( i · ( 𝐵 , 𝐴 ) ) ) ) ) = ( ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) + ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) ) ) |
115 |
84 92 114
|
3eqtrd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( i · ( ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) + ( ( 𝐴 , ( i · 𝐵 ) ) + ( ( i · 𝐵 ) , 𝐴 ) ) ) ) = ( ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) + ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) ) ) |
116 |
69 79 115
|
3eqtrd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( i · ( ( ( 𝑁 ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 − ( i · 𝐵 ) ) ) ↑ 2 ) ) ) = ( ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) + ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) ) ) |
117 |
46 116
|
oveq12d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 − ( i · 𝐵 ) ) ) ↑ 2 ) ) ) ) = ( ( ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) + ( ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) + ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) ) ) ) |
118 |
117
|
oveq1d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 − ( i · 𝐵 ) ) ) ↑ 2 ) ) ) ) / 4 ) = ( ( ( ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) + ( ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) + ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) ) ) / 4 ) ) |
119 |
40 43
|
subcld |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) ∈ ℂ ) |
120 |
44 44 119 119
|
add4d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) + ( ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) + ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) ) ) = ( ( ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) + ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) ) + ( ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) + ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) ) ) ) |
121 |
40 43 40
|
ppncand |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) + ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) ) = ( ( 𝐴 , 𝐵 ) + ( 𝐴 , 𝐵 ) ) ) |
122 |
121 121
|
oveq12d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) + ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) ) + ( ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) + ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) ) ) = ( ( ( 𝐴 , 𝐵 ) + ( 𝐴 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐴 , 𝐵 ) ) ) ) |
123 |
120 122
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) + ( ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) + ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) ) ) = ( ( ( 𝐴 , 𝐵 ) + ( 𝐴 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐴 , 𝐵 ) ) ) ) |
124 |
123
|
oveq1d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) + ( ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) + ( ( 𝐴 , 𝐵 ) − ( 𝐵 , 𝐴 ) ) ) ) / 4 ) = ( ( ( ( 𝐴 , 𝐵 ) + ( 𝐴 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐴 , 𝐵 ) ) ) / 4 ) ) |
125 |
40
|
2timesd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 2 · ( 𝐴 , 𝐵 ) ) = ( ( 𝐴 , 𝐵 ) + ( 𝐴 , 𝐵 ) ) ) |
126 |
125
|
eqcomd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 , 𝐵 ) + ( 𝐴 , 𝐵 ) ) = ( 2 · ( 𝐴 , 𝐵 ) ) ) |
127 |
126 126
|
oveq12d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝐴 , 𝐵 ) + ( 𝐴 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐴 , 𝐵 ) ) ) = ( ( 2 · ( 𝐴 , 𝐵 ) ) + ( 2 · ( 𝐴 , 𝐵 ) ) ) ) |
128 |
|
2cnd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 2 ∈ ℂ ) |
129 |
128 128 40
|
adddird |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 2 + 2 ) · ( 𝐴 , 𝐵 ) ) = ( ( 2 · ( 𝐴 , 𝐵 ) ) + ( 2 · ( 𝐴 , 𝐵 ) ) ) ) |
130 |
|
2p2e4 |
⊢ ( 2 + 2 ) = 4 |
131 |
130
|
a1i |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 2 + 2 ) = 4 ) |
132 |
131
|
oveq1d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 2 + 2 ) · ( 𝐴 , 𝐵 ) ) = ( 4 · ( 𝐴 , 𝐵 ) ) ) |
133 |
127 129 132
|
3eqtr2d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( 𝐴 , 𝐵 ) + ( 𝐴 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐴 , 𝐵 ) ) ) = ( 4 · ( 𝐴 , 𝐵 ) ) ) |
134 |
133
|
oveq1d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( ( 𝐴 , 𝐵 ) + ( 𝐴 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐴 , 𝐵 ) ) ) / 4 ) = ( ( 4 · ( 𝐴 , 𝐵 ) ) / 4 ) ) |
135 |
|
4cn |
⊢ 4 ∈ ℂ |
136 |
135
|
a1i |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 4 ∈ ℂ ) |
137 |
|
4ne0 |
⊢ 4 ≠ 0 |
138 |
137
|
a1i |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → 4 ≠ 0 ) |
139 |
40 136 138
|
divcan3d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 4 · ( 𝐴 , 𝐵 ) ) / 4 ) = ( 𝐴 , 𝐵 ) ) |
140 |
134 139
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( ( ( 𝐴 , 𝐵 ) + ( 𝐴 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐴 , 𝐵 ) ) ) / 4 ) = ( 𝐴 , 𝐵 ) ) |
141 |
118 124 140
|
3eqtrrd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 , 𝐵 ) = ( ( ( ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 − 𝐵 ) ) ↑ 2 ) ) + ( i · ( ( ( 𝑁 ‘ ( 𝐴 + ( i · 𝐵 ) ) ) ↑ 2 ) − ( ( 𝑁 ‘ ( 𝐴 − ( i · 𝐵 ) ) ) ↑ 2 ) ) ) ) / 4 ) ) |