Metamath Proof Explorer


Theorem cphlmod

Description: A subcomplex pre-Hilbert space is a left module. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Assertion cphlmod ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod )

Proof

Step Hyp Ref Expression
1 cphnlm ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod )
2 nlmlmod ( 𝑊 ∈ NrmMod → 𝑊 ∈ LMod )
3 1 2 syl ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod )