Metamath Proof Explorer


Theorem cphlvec

Description: A subcomplex pre-Hilbert space is a left vector space. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Assertion cphlvec ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec )

Proof

Step Hyp Ref Expression
1 cphphl ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil )
2 phllvec ( 𝑊 ∈ PreHil → 𝑊 ∈ LVec )
3 1 2 syl ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec )