Metamath Proof Explorer


Theorem cphngp

Description: A subcomplex pre-Hilbert space is a normed group. (Contributed by Mario Carneiro, 13-Oct-2015)

Ref Expression
Assertion cphngp ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp )

Proof

Step Hyp Ref Expression
1 cphnlm ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod )
2 nlmngp ( 𝑊 ∈ NrmMod → 𝑊 ∈ NrmGrp )
3 1 2 syl ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp )