| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmsq.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | nmsq.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 3 |  | nmsq.n | ⊢ 𝑁  =  ( norm ‘ 𝑊 ) | 
						
							| 4 | 1 2 3 | cphnmfval | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑁  =  ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ) | 
						
							| 5 | 4 | fveq1d | ⊢ ( 𝑊  ∈  ℂPreHil  →  ( 𝑁 ‘ 𝐴 )  =  ( ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ‘ 𝐴 ) ) | 
						
							| 6 |  | oveq12 | ⊢ ( ( 𝑥  =  𝐴  ∧  𝑥  =  𝐴 )  →  ( 𝑥  ,  𝑥 )  =  ( 𝐴  ,  𝐴 ) ) | 
						
							| 7 | 6 | anidms | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ,  𝑥 )  =  ( 𝐴  ,  𝐴 ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( 𝑥  =  𝐴  →  ( √ ‘ ( 𝑥  ,  𝑥 ) )  =  ( √ ‘ ( 𝐴  ,  𝐴 ) ) ) | 
						
							| 9 |  | eqid | ⊢ ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) )  =  ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) | 
						
							| 10 |  | fvex | ⊢ ( √ ‘ ( 𝐴  ,  𝐴 ) )  ∈  V | 
						
							| 11 | 8 9 10 | fvmpt | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ‘ 𝐴 )  =  ( √ ‘ ( 𝐴  ,  𝐴 ) ) ) | 
						
							| 12 | 5 11 | sylan9eq | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝑉 )  →  ( 𝑁 ‘ 𝐴 )  =  ( √ ‘ ( 𝐴  ,  𝐴 ) ) ) |