Metamath Proof Explorer


Theorem cphnm

Description: The square of the norm is the norm of an inner product in a subcomplex pre-Hilbert space. (Contributed by Mario Carneiro, 7-Oct-2015)

Ref Expression
Hypotheses nmsq.v 𝑉 = ( Base ‘ 𝑊 )
nmsq.h , = ( ·𝑖𝑊 )
nmsq.n 𝑁 = ( norm ‘ 𝑊 )
Assertion cphnm ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ) → ( 𝑁𝐴 ) = ( √ ‘ ( 𝐴 , 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 nmsq.v 𝑉 = ( Base ‘ 𝑊 )
2 nmsq.h , = ( ·𝑖𝑊 )
3 nmsq.n 𝑁 = ( norm ‘ 𝑊 )
4 1 2 3 cphnmfval ( 𝑊 ∈ ℂPreHil → 𝑁 = ( 𝑥𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) )
5 4 fveq1d ( 𝑊 ∈ ℂPreHil → ( 𝑁𝐴 ) = ( ( 𝑥𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝐴 ) )
6 oveq12 ( ( 𝑥 = 𝐴𝑥 = 𝐴 ) → ( 𝑥 , 𝑥 ) = ( 𝐴 , 𝐴 ) )
7 6 anidms ( 𝑥 = 𝐴 → ( 𝑥 , 𝑥 ) = ( 𝐴 , 𝐴 ) )
8 7 fveq2d ( 𝑥 = 𝐴 → ( √ ‘ ( 𝑥 , 𝑥 ) ) = ( √ ‘ ( 𝐴 , 𝐴 ) ) )
9 eqid ( 𝑥𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) = ( 𝑥𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) )
10 fvex ( √ ‘ ( 𝐴 , 𝐴 ) ) ∈ V
11 8 9 10 fvmpt ( 𝐴𝑉 → ( ( 𝑥𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ‘ 𝐴 ) = ( √ ‘ ( 𝐴 , 𝐴 ) ) )
12 5 11 sylan9eq ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝑉 ) → ( 𝑁𝐴 ) = ( √ ‘ ( 𝐴 , 𝐴 ) ) )