Step |
Hyp |
Ref |
Expression |
1 |
|
nmsq.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
nmsq.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
nmsq.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
6 |
1 2 3 4 5
|
iscph |
⊢ ( 𝑊 ∈ ℂPreHil ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) ∧ ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) ) |
7 |
6
|
simp3bi |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑁 = ( 𝑥 ∈ 𝑉 ↦ ( √ ‘ ( 𝑥 , 𝑥 ) ) ) ) |