| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nmsq.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | nmsq.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 3 |  | nmsq.n | ⊢ 𝑁  =  ( norm ‘ 𝑊 ) | 
						
							| 4 |  | eqid | ⊢ ( Scalar ‘ 𝑊 )  =  ( Scalar ‘ 𝑊 ) | 
						
							| 5 |  | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) )  =  ( Base ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 6 | 1 2 3 4 5 | iscph | ⊢ ( 𝑊  ∈  ℂPreHil  ↔  ( ( 𝑊  ∈  PreHil  ∧  𝑊  ∈  NrmMod  ∧  ( Scalar ‘ 𝑊 )  =  ( ℂfld  ↾s  ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )  ∧  ( √  “  ( ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∩  ( 0 [,) +∞ ) ) )  ⊆  ( Base ‘ ( Scalar ‘ 𝑊 ) )  ∧  𝑁  =  ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ) ) | 
						
							| 7 | 6 | simp3bi | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑁  =  ( 𝑥  ∈  𝑉  ↦  ( √ ‘ ( 𝑥  ,  𝑥 ) ) ) ) |