| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphnmvs.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
| 2 |
|
cphnmvs.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
| 3 |
|
cphnmvs.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 4 |
|
cphnmvs.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 5 |
|
cphnmvs.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 6 |
|
cphnlm |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod ) |
| 7 |
|
eqid |
⊢ ( norm ‘ 𝐹 ) = ( norm ‘ 𝐹 ) |
| 8 |
1 2 3 4 5 7
|
nmvs |
⊢ ( ( 𝑊 ∈ NrmMod ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |
| 9 |
6 8
|
syl3an1 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |
| 10 |
|
cphclm |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) |
| 11 |
4 5
|
clmabs |
⊢ ( ( 𝑊 ∈ ℂMod ∧ 𝑋 ∈ 𝐾 ) → ( abs ‘ 𝑋 ) = ( ( norm ‘ 𝐹 ) ‘ 𝑋 ) ) |
| 12 |
10 11
|
sylan |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝐾 ) → ( abs ‘ 𝑋 ) = ( ( norm ‘ 𝐹 ) ‘ 𝑋 ) ) |
| 13 |
12
|
3adant3 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( abs ‘ 𝑋 ) = ( ( norm ‘ 𝐹 ) ‘ 𝑋 ) ) |
| 14 |
13
|
oveq1d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( ( abs ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) = ( ( ( norm ‘ 𝐹 ) ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |
| 15 |
9 14
|
eqtr4d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝑉 ) → ( 𝑁 ‘ ( 𝑋 · 𝑌 ) ) = ( ( abs ‘ 𝑋 ) · ( 𝑁 ‘ 𝑌 ) ) ) |