Metamath Proof Explorer


Theorem cphnvc

Description: A subcomplex pre-Hilbert space is a normed vector space. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Assertion cphnvc ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec )

Proof

Step Hyp Ref Expression
1 cphnlm ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod )
2 cphlvec ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec )
3 isnvc ( 𝑊 ∈ NrmVec ↔ ( 𝑊 ∈ NrmMod ∧ 𝑊 ∈ LVec ) )
4 1 2 3 sylanbrc ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmVec )