Step |
Hyp |
Ref |
Expression |
1 |
|
cphipcj.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
2 |
|
cphipcj.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
|
cphphl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) |
4 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑊 ) ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) |
6 |
4 1 2 5
|
iporthcom |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 , 𝐵 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( 𝐵 , 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
7 |
3 6
|
syl3an1 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 , 𝐵 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( 𝐵 , 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
8 |
|
cphclm |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) |
9 |
4
|
clm0 |
⊢ ( 𝑊 ∈ ℂMod → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
10 |
8 9
|
syl |
⊢ ( 𝑊 ∈ ℂPreHil → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → 0 = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) |
12 |
11
|
eqeq2d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 , 𝐵 ) = 0 ↔ ( 𝐴 , 𝐵 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
13 |
11
|
eqeq2d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐵 , 𝐴 ) = 0 ↔ ( 𝐵 , 𝐴 ) = ( 0g ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
14 |
7 12 13
|
3bitr4d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 , 𝐵 ) = 0 ↔ ( 𝐵 , 𝐴 ) = 0 ) ) |