Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
2 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
5 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
6 |
1 2 3 4 5
|
iscph |
⊢ ( 𝑊 ∈ ℂPreHil ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) ∧ ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( norm ‘ 𝑊 ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) ) |
7 |
6
|
simp1bi |
⊢ ( 𝑊 ∈ ℂPreHil → ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ ( Scalar ‘ 𝑊 ) = ( ℂfld ↾s ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) ) |
8 |
7
|
simp1d |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) |