Step |
Hyp |
Ref |
Expression |
1 |
|
cphpyth.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
cphpyth.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
3 |
|
cphpyth.p |
⊢ + = ( +g ‘ 𝑊 ) |
4 |
|
cphpyth.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
5 |
|
cphpyth.w |
⊢ ( 𝜑 → 𝑊 ∈ ℂPreHil ) |
6 |
|
cphpyth.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
7 |
|
cphpyth.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
8 |
2 1 3 5 6 7 6 7
|
cph2di |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( 𝐴 , 𝐵 ) = 0 ) |
11 |
2 1
|
cphorthcom |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝐴 , 𝐵 ) = 0 ↔ ( 𝐵 , 𝐴 ) = 0 ) ) |
12 |
5 6 7 11
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐵 ) = 0 ↔ ( 𝐵 , 𝐴 ) = 0 ) ) |
13 |
12
|
biimpa |
⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( 𝐵 , 𝐴 ) = 0 ) |
14 |
10 13
|
oveq12d |
⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) = ( 0 + 0 ) ) |
15 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
16 |
14 15
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) = 0 ) |
17 |
16
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + ( ( 𝐴 , 𝐵 ) + ( 𝐵 , 𝐴 ) ) ) = ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + 0 ) ) |
18 |
1 2
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐴 ∈ 𝑉 ) → ( 𝐴 , 𝐴 ) ∈ ℂ ) |
19 |
5 6 6 18
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 , 𝐴 ) ∈ ℂ ) |
20 |
1 2
|
cphipcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐵 , 𝐵 ) ∈ ℂ ) |
21 |
5 7 7 20
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 , 𝐵 ) ∈ ℂ ) |
22 |
19 21
|
addcld |
⊢ ( 𝜑 → ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ∈ ℂ ) |
23 |
22
|
addid1d |
⊢ ( 𝜑 → ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + 0 ) = ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) |
24 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) + 0 ) = ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) |
25 |
9 17 24
|
3eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) = ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) |
26 |
|
cphngp |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmGrp ) |
27 |
|
ngpgrp |
⊢ ( 𝑊 ∈ NrmGrp → 𝑊 ∈ Grp ) |
28 |
5 26 27
|
3syl |
⊢ ( 𝜑 → 𝑊 ∈ Grp ) |
29 |
1 3 28 6 7
|
grpcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ 𝑉 ) |
30 |
1 2 4
|
nmsq |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 + 𝐵 ) ∈ 𝑉 ) → ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) ) |
31 |
5 29 30
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 + 𝐵 ) , ( 𝐴 + 𝐵 ) ) ) |
33 |
1 2 4
|
nmsq |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |
34 |
5 6 33
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 , 𝐴 ) ) |
35 |
1 2 4
|
nmsq |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 , 𝐵 ) ) |
36 |
5 7 35
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 , 𝐵 ) ) |
37 |
34 36
|
oveq12d |
⊢ ( 𝜑 → ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) = ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) = ( ( 𝐴 , 𝐴 ) + ( 𝐵 , 𝐵 ) ) ) |
39 |
25 32 38
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ ( 𝐴 , 𝐵 ) = 0 ) → ( ( 𝑁 ‘ ( 𝐴 + 𝐵 ) ) ↑ 2 ) = ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |