| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphpyth.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | cphpyth.h | ⊢  ,   =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 3 |  | cphpyth.p | ⊢  +   =  ( +g ‘ 𝑊 ) | 
						
							| 4 |  | cphpyth.n | ⊢ 𝑁  =  ( norm ‘ 𝑊 ) | 
						
							| 5 |  | cphpyth.w | ⊢ ( 𝜑  →  𝑊  ∈  ℂPreHil ) | 
						
							| 6 |  | cphpyth.a | ⊢ ( 𝜑  →  𝐴  ∈  𝑉 ) | 
						
							| 7 |  | cphpyth.b | ⊢ ( 𝜑  →  𝐵  ∈  𝑉 ) | 
						
							| 8 | 2 1 3 5 6 7 6 7 | cph2di | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝐵 )  ,  ( 𝐴  +  𝐵 ) )  =  ( ( ( 𝐴  ,  𝐴 )  +  ( 𝐵  ,  𝐵 ) )  +  ( ( 𝐴  ,  𝐵 )  +  ( 𝐵  ,  𝐴 ) ) ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ,  𝐵 )  =  0 )  →  ( ( 𝐴  +  𝐵 )  ,  ( 𝐴  +  𝐵 ) )  =  ( ( ( 𝐴  ,  𝐴 )  +  ( 𝐵  ,  𝐵 ) )  +  ( ( 𝐴  ,  𝐵 )  +  ( 𝐵  ,  𝐴 ) ) ) ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ,  𝐵 )  =  0 )  →  ( 𝐴  ,  𝐵 )  =  0 ) | 
						
							| 11 | 2 1 | cphorthcom | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( ( 𝐴  ,  𝐵 )  =  0  ↔  ( 𝐵  ,  𝐴 )  =  0 ) ) | 
						
							| 12 | 5 6 7 11 | syl3anc | ⊢ ( 𝜑  →  ( ( 𝐴  ,  𝐵 )  =  0  ↔  ( 𝐵  ,  𝐴 )  =  0 ) ) | 
						
							| 13 | 12 | biimpa | ⊢ ( ( 𝜑  ∧  ( 𝐴  ,  𝐵 )  =  0 )  →  ( 𝐵  ,  𝐴 )  =  0 ) | 
						
							| 14 | 10 13 | oveq12d | ⊢ ( ( 𝜑  ∧  ( 𝐴  ,  𝐵 )  =  0 )  →  ( ( 𝐴  ,  𝐵 )  +  ( 𝐵  ,  𝐴 ) )  =  ( 0  +  0 ) ) | 
						
							| 15 |  | 00id | ⊢ ( 0  +  0 )  =  0 | 
						
							| 16 | 14 15 | eqtrdi | ⊢ ( ( 𝜑  ∧  ( 𝐴  ,  𝐵 )  =  0 )  →  ( ( 𝐴  ,  𝐵 )  +  ( 𝐵  ,  𝐴 ) )  =  0 ) | 
						
							| 17 | 16 | oveq2d | ⊢ ( ( 𝜑  ∧  ( 𝐴  ,  𝐵 )  =  0 )  →  ( ( ( 𝐴  ,  𝐴 )  +  ( 𝐵  ,  𝐵 ) )  +  ( ( 𝐴  ,  𝐵 )  +  ( 𝐵  ,  𝐴 ) ) )  =  ( ( ( 𝐴  ,  𝐴 )  +  ( 𝐵  ,  𝐵 ) )  +  0 ) ) | 
						
							| 18 | 1 2 | cphipcl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝑉  ∧  𝐴  ∈  𝑉 )  →  ( 𝐴  ,  𝐴 )  ∈  ℂ ) | 
						
							| 19 | 5 6 6 18 | syl3anc | ⊢ ( 𝜑  →  ( 𝐴  ,  𝐴 )  ∈  ℂ ) | 
						
							| 20 | 1 2 | cphipcl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐵  ∈  𝑉  ∧  𝐵  ∈  𝑉 )  →  ( 𝐵  ,  𝐵 )  ∈  ℂ ) | 
						
							| 21 | 5 7 7 20 | syl3anc | ⊢ ( 𝜑  →  ( 𝐵  ,  𝐵 )  ∈  ℂ ) | 
						
							| 22 | 19 21 | addcld | ⊢ ( 𝜑  →  ( ( 𝐴  ,  𝐴 )  +  ( 𝐵  ,  𝐵 ) )  ∈  ℂ ) | 
						
							| 23 | 22 | addridd | ⊢ ( 𝜑  →  ( ( ( 𝐴  ,  𝐴 )  +  ( 𝐵  ,  𝐵 ) )  +  0 )  =  ( ( 𝐴  ,  𝐴 )  +  ( 𝐵  ,  𝐵 ) ) ) | 
						
							| 24 | 23 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ,  𝐵 )  =  0 )  →  ( ( ( 𝐴  ,  𝐴 )  +  ( 𝐵  ,  𝐵 ) )  +  0 )  =  ( ( 𝐴  ,  𝐴 )  +  ( 𝐵  ,  𝐵 ) ) ) | 
						
							| 25 | 9 17 24 | 3eqtrd | ⊢ ( ( 𝜑  ∧  ( 𝐴  ,  𝐵 )  =  0 )  →  ( ( 𝐴  +  𝐵 )  ,  ( 𝐴  +  𝐵 ) )  =  ( ( 𝐴  ,  𝐴 )  +  ( 𝐵  ,  𝐵 ) ) ) | 
						
							| 26 |  | cphngp | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  NrmGrp ) | 
						
							| 27 |  | ngpgrp | ⊢ ( 𝑊  ∈  NrmGrp  →  𝑊  ∈  Grp ) | 
						
							| 28 | 5 26 27 | 3syl | ⊢ ( 𝜑  →  𝑊  ∈  Grp ) | 
						
							| 29 | 1 3 28 6 7 | grpcld | ⊢ ( 𝜑  →  ( 𝐴  +  𝐵 )  ∈  𝑉 ) | 
						
							| 30 | 1 2 4 | nmsq | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  ( 𝐴  +  𝐵 )  ∈  𝑉 )  →  ( ( 𝑁 ‘ ( 𝐴  +  𝐵 ) ) ↑ 2 )  =  ( ( 𝐴  +  𝐵 )  ,  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 31 | 5 29 30 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ ( 𝐴  +  𝐵 ) ) ↑ 2 )  =  ( ( 𝐴  +  𝐵 )  ,  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 32 | 31 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ,  𝐵 )  =  0 )  →  ( ( 𝑁 ‘ ( 𝐴  +  𝐵 ) ) ↑ 2 )  =  ( ( 𝐴  +  𝐵 )  ,  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 33 | 1 2 4 | nmsq | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝑉 )  →  ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  =  ( 𝐴  ,  𝐴 ) ) | 
						
							| 34 | 5 6 33 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  =  ( 𝐴  ,  𝐴 ) ) | 
						
							| 35 | 1 2 4 | nmsq | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐵  ∈  𝑉 )  →  ( ( 𝑁 ‘ 𝐵 ) ↑ 2 )  =  ( 𝐵  ,  𝐵 ) ) | 
						
							| 36 | 5 7 35 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑁 ‘ 𝐵 ) ↑ 2 )  =  ( 𝐵  ,  𝐵 ) ) | 
						
							| 37 | 34 36 | oveq12d | ⊢ ( 𝜑  →  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) )  =  ( ( 𝐴  ,  𝐴 )  +  ( 𝐵  ,  𝐵 ) ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝐴  ,  𝐵 )  =  0 )  →  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) )  =  ( ( 𝐴  ,  𝐴 )  +  ( 𝐵  ,  𝐵 ) ) ) | 
						
							| 39 | 25 32 38 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  ( 𝐴  ,  𝐵 )  =  0 )  →  ( ( 𝑁 ‘ ( 𝐴  +  𝐵 ) ) ↑ 2 )  =  ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 )  +  ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |