Description: The scalar field of a subcomplex pre-Hilbert space contains the rational numbers. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphsca.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| cphsca.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| Assertion | cphqss | ⊢ ( 𝑊 ∈ ℂPreHil → ℚ ⊆ 𝐾 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cphsca.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | cphsca.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | 1 2 | cphsubrg | ⊢ ( 𝑊 ∈ ℂPreHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 4 | 1 2 | cphsca | ⊢ ( 𝑊 ∈ ℂPreHil → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| 5 | cphlvec | ⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec ) | |
| 6 | 1 | lvecdrng | ⊢ ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing ) |
| 7 | 5 6 | syl | ⊢ ( 𝑊 ∈ ℂPreHil → 𝐹 ∈ DivRing ) |
| 8 | 4 7 | eqeltrrd | ⊢ ( 𝑊 ∈ ℂPreHil → ( ℂfld ↾s 𝐾 ) ∈ DivRing ) |
| 9 | qsssubdrg | ⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝐾 ) ∈ DivRing ) → ℚ ⊆ 𝐾 ) | |
| 10 | 3 8 9 | syl2anc | ⊢ ( 𝑊 ∈ ℂPreHil → ℚ ⊆ 𝐾 ) |