Metamath Proof Explorer


Theorem cphqss

Description: The scalar field of a subcomplex pre-Hilbert space contains the rational numbers. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses cphsca.f 𝐹 = ( Scalar ‘ 𝑊 )
cphsca.k 𝐾 = ( Base ‘ 𝐹 )
Assertion cphqss ( 𝑊 ∈ ℂPreHil → ℚ ⊆ 𝐾 )

Proof

Step Hyp Ref Expression
1 cphsca.f 𝐹 = ( Scalar ‘ 𝑊 )
2 cphsca.k 𝐾 = ( Base ‘ 𝐹 )
3 1 2 cphsubrg ( 𝑊 ∈ ℂPreHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) )
4 1 2 cphsca ( 𝑊 ∈ ℂPreHil → 𝐹 = ( ℂflds 𝐾 ) )
5 cphlvec ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec )
6 1 lvecdrng ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing )
7 5 6 syl ( 𝑊 ∈ ℂPreHil → 𝐹 ∈ DivRing )
8 4 7 eqeltrrd ( 𝑊 ∈ ℂPreHil → ( ℂflds 𝐾 ) ∈ DivRing )
9 qsssubdrg ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝐾 ) ∈ DivRing ) → ℚ ⊆ 𝐾 )
10 3 8 9 syl2anc ( 𝑊 ∈ ℂPreHil → ℚ ⊆ 𝐾 )