Step |
Hyp |
Ref |
Expression |
1 |
|
cphsca.f |
β’ πΉ = ( Scalar β π ) |
2 |
|
cphsca.k |
β’ πΎ = ( Base β πΉ ) |
3 |
1 2
|
cphsubrg |
β’ ( π β βPreHil β πΎ β ( SubRing β βfld ) ) |
4 |
1 2
|
cphsca |
β’ ( π β βPreHil β πΉ = ( βfld βΎs πΎ ) ) |
5 |
|
cphlvec |
β’ ( π β βPreHil β π β LVec ) |
6 |
1
|
lvecdrng |
β’ ( π β LVec β πΉ β DivRing ) |
7 |
5 6
|
syl |
β’ ( π β βPreHil β πΉ β DivRing ) |
8 |
4 7
|
eqeltrrd |
β’ ( π β βPreHil β ( βfld βΎs πΎ ) β DivRing ) |
9 |
|
qsssubdrg |
β’ ( ( πΎ β ( SubRing β βfld ) β§ ( βfld βΎs πΎ ) β DivRing ) β β β πΎ ) |
10 |
3 8 9
|
syl2anc |
β’ ( π β βPreHil β β β πΎ ) |