Metamath Proof Explorer


Theorem cphreccl

Description: The scalar field of a subcomplex pre-Hilbert space is closed under reciprocal. (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses cphsca.f 𝐹 = ( Scalar ‘ 𝑊 )
cphsca.k 𝐾 = ( Base ‘ 𝐹 )
Assertion cphreccl ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝐾𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ 𝐾 )

Proof

Step Hyp Ref Expression
1 cphsca.f 𝐹 = ( Scalar ‘ 𝑊 )
2 cphsca.k 𝐾 = ( Base ‘ 𝐹 )
3 1 2 cphsca ( 𝑊 ∈ ℂPreHil → 𝐹 = ( ℂflds 𝐾 ) )
4 cphlvec ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec )
5 1 lvecdrng ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing )
6 4 5 syl ( 𝑊 ∈ ℂPreHil → 𝐹 ∈ DivRing )
7 2 3 6 cphreccllem ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝐾𝐴 ≠ 0 ) → ( 1 / 𝐴 ) ∈ 𝐾 )