Step |
Hyp |
Ref |
Expression |
1 |
|
cphsubrglem.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
2 |
|
cphsubrglem.1 |
⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐴 ) ) |
3 |
|
cphsubrglem.2 |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
4 |
1 2 3
|
cphsubrglem |
⊢ ( 𝜑 → ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 = ( 𝐴 ∩ ℂ ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) |
5 |
4
|
simp3d |
⊢ ( 𝜑 → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
6 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
7 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
8 |
7
|
subrgss |
⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ⊆ ℂ ) |
9 |
6 8
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝐾 ⊆ ℂ ) |
10 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐾 ) |
11 |
9 10
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ℂ ) |
12 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) |
13 |
|
cnfldinv |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ 𝑋 ) = ( 1 / 𝑋 ) ) |
14 |
11 12 13
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ 𝑋 ) = ( 1 / 𝑋 ) ) |
15 |
|
eqid |
⊢ ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐾 ) |
16 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
17 |
15 16
|
subrg0 |
⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 0 = ( 0g ‘ ( ℂfld ↾s 𝐾 ) ) ) |
18 |
6 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 0 = ( 0g ‘ ( ℂfld ↾s 𝐾 ) ) ) |
19 |
4
|
simp1d |
⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
20 |
19
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
21 |
20
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( 0g ‘ 𝐹 ) = ( 0g ‘ ( ℂfld ↾s 𝐾 ) ) ) |
22 |
18 21
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 0 = ( 0g ‘ 𝐹 ) ) |
23 |
12 22
|
neeqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ ( 0g ‘ 𝐹 ) ) |
24 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ↔ ( 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ ( 0g ‘ 𝐹 ) ) ) |
25 |
10 23 24
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ) |
26 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝐹 ∈ DivRing ) |
27 |
|
eqid |
⊢ ( Unit ‘ 𝐹 ) = ( Unit ‘ 𝐹 ) |
28 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
29 |
1 27 28
|
isdrng |
⊢ ( 𝐹 ∈ DivRing ↔ ( 𝐹 ∈ Ring ∧ ( Unit ‘ 𝐹 ) = ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ) ) |
30 |
29
|
simprbi |
⊢ ( 𝐹 ∈ DivRing → ( Unit ‘ 𝐹 ) = ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ) |
31 |
26 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( Unit ‘ 𝐹 ) = ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ) |
32 |
20
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( Unit ‘ 𝐹 ) = ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ) |
33 |
31 32
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) = ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ) |
34 |
25 33
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ) |
35 |
|
eqid |
⊢ ( Unit ‘ ℂfld ) = ( Unit ‘ ℂfld ) |
36 |
|
eqid |
⊢ ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) = ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) |
37 |
|
eqid |
⊢ ( invr ‘ ℂfld ) = ( invr ‘ ℂfld ) |
38 |
15 35 36 37
|
subrgunit |
⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → ( 𝑋 ∈ ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ↔ ( 𝑋 ∈ ( Unit ‘ ℂfld ) ∧ 𝑋 ∈ 𝐾 ∧ ( ( invr ‘ ℂfld ) ‘ 𝑋 ) ∈ 𝐾 ) ) ) |
39 |
6 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( 𝑋 ∈ ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ↔ ( 𝑋 ∈ ( Unit ‘ ℂfld ) ∧ 𝑋 ∈ 𝐾 ∧ ( ( invr ‘ ℂfld ) ‘ 𝑋 ) ∈ 𝐾 ) ) ) |
40 |
34 39
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( 𝑋 ∈ ( Unit ‘ ℂfld ) ∧ 𝑋 ∈ 𝐾 ∧ ( ( invr ‘ ℂfld ) ‘ 𝑋 ) ∈ 𝐾 ) ) |
41 |
40
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ 𝑋 ) ∈ 𝐾 ) |
42 |
14 41
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( 1 / 𝑋 ) ∈ 𝐾 ) |