| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphsubrglem.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 2 |
|
cphsubrglem.1 |
⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐴 ) ) |
| 3 |
|
cphsubrglem.2 |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
| 4 |
1 2 3
|
cphsubrglem |
⊢ ( 𝜑 → ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 = ( 𝐴 ∩ ℂ ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) |
| 5 |
4
|
simp3d |
⊢ ( 𝜑 → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 6 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
| 7 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
| 8 |
7
|
subrgss |
⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ⊆ ℂ ) |
| 9 |
6 8
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝐾 ⊆ ℂ ) |
| 10 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ 𝐾 ) |
| 11 |
9 10
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ℂ ) |
| 12 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ 0 ) |
| 13 |
|
cnfldinv |
⊢ ( ( 𝑋 ∈ ℂ ∧ 𝑋 ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ 𝑋 ) = ( 1 / 𝑋 ) ) |
| 14 |
11 12 13
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ 𝑋 ) = ( 1 / 𝑋 ) ) |
| 15 |
|
eqid |
⊢ ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐾 ) |
| 16 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 17 |
15 16
|
subrg0 |
⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 0 = ( 0g ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 18 |
6 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 0 = ( 0g ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 19 |
4
|
simp1d |
⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| 20 |
19
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
| 21 |
20
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( 0g ‘ 𝐹 ) = ( 0g ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 22 |
18 21
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 0 = ( 0g ‘ 𝐹 ) ) |
| 23 |
12 22
|
neeqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝑋 ≠ ( 0g ‘ 𝐹 ) ) |
| 24 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ↔ ( 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ ( 0g ‘ 𝐹 ) ) ) |
| 25 |
10 23 24
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ) |
| 26 |
3
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝐹 ∈ DivRing ) |
| 27 |
|
eqid |
⊢ ( Unit ‘ 𝐹 ) = ( Unit ‘ 𝐹 ) |
| 28 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
| 29 |
1 27 28
|
isdrng |
⊢ ( 𝐹 ∈ DivRing ↔ ( 𝐹 ∈ Ring ∧ ( Unit ‘ 𝐹 ) = ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ) ) |
| 30 |
29
|
simprbi |
⊢ ( 𝐹 ∈ DivRing → ( Unit ‘ 𝐹 ) = ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ) |
| 31 |
26 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( Unit ‘ 𝐹 ) = ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) ) |
| 32 |
20
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( Unit ‘ 𝐹 ) = ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 33 |
31 32
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( 𝐾 ∖ { ( 0g ‘ 𝐹 ) } ) = ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 34 |
25 33
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ) |
| 35 |
|
eqid |
⊢ ( Unit ‘ ℂfld ) = ( Unit ‘ ℂfld ) |
| 36 |
|
eqid |
⊢ ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) = ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) |
| 37 |
|
eqid |
⊢ ( invr ‘ ℂfld ) = ( invr ‘ ℂfld ) |
| 38 |
15 35 36 37
|
subrgunit |
⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → ( 𝑋 ∈ ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ↔ ( 𝑋 ∈ ( Unit ‘ ℂfld ) ∧ 𝑋 ∈ 𝐾 ∧ ( ( invr ‘ ℂfld ) ‘ 𝑋 ) ∈ 𝐾 ) ) ) |
| 39 |
6 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( 𝑋 ∈ ( Unit ‘ ( ℂfld ↾s 𝐾 ) ) ↔ ( 𝑋 ∈ ( Unit ‘ ℂfld ) ∧ 𝑋 ∈ 𝐾 ∧ ( ( invr ‘ ℂfld ) ‘ 𝑋 ) ∈ 𝐾 ) ) ) |
| 40 |
34 39
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( 𝑋 ∈ ( Unit ‘ ℂfld ) ∧ 𝑋 ∈ 𝐾 ∧ ( ( invr ‘ ℂfld ) ‘ 𝑋 ) ∈ 𝐾 ) ) |
| 41 |
40
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( ( invr ‘ ℂfld ) ‘ 𝑋 ) ∈ 𝐾 ) |
| 42 |
14 41
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ 𝐾 ∧ 𝑋 ≠ 0 ) → ( 1 / 𝑋 ) ∈ 𝐾 ) |