| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cphsca.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
| 2 |
|
cphsca.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
| 3 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
| 4 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
| 5 |
|
eqid |
⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) |
| 6 |
3 4 5 1 2
|
iscph |
⊢ ( 𝑊 ∈ ℂPreHil ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ ( norm ‘ 𝑊 ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) ) |
| 7 |
6
|
simp1bi |
⊢ ( 𝑊 ∈ ℂPreHil → ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ) |
| 8 |
7
|
simp3d |
⊢ ( 𝑊 ∈ ℂPreHil → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |