Step |
Hyp |
Ref |
Expression |
1 |
|
cphsca.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
cphsca.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
|
sqrtf |
⊢ √ : ℂ ⟶ ℂ |
4 |
|
ffn |
⊢ ( √ : ℂ ⟶ ℂ → √ Fn ℂ ) |
5 |
3 4
|
ax-mp |
⊢ √ Fn ℂ |
6 |
|
inss2 |
⊢ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ⊆ ( 0 [,) +∞ ) |
7 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
8 |
|
ax-resscn |
⊢ ℝ ⊆ ℂ |
9 |
7 8
|
sstri |
⊢ ( 0 [,) +∞ ) ⊆ ℂ |
10 |
6 9
|
sstri |
⊢ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ⊆ ℂ |
11 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ 𝐾 ) |
12 |
|
elrege0 |
⊢ ( 𝐴 ∈ ( 0 [,) +∞ ) ↔ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) |
13 |
12
|
biimpri |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
14 |
13
|
3adant1 |
⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ( 0 [,) +∞ ) ) |
15 |
11 14
|
elind |
⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ∈ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) |
16 |
|
fnfvima |
⊢ ( ( √ Fn ℂ ∧ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ⊆ ℂ ∧ 𝐴 ∈ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) → ( √ ‘ 𝐴 ) ∈ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ) |
17 |
5 10 15 16
|
mp3an12i |
⊢ ( ( 𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( √ ‘ 𝐴 ) ∈ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
19 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
20 |
|
eqid |
⊢ ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 ) |
21 |
18 19 20 1 2
|
iscph |
⊢ ( 𝑊 ∈ ℂPreHil ↔ ( ( 𝑊 ∈ PreHil ∧ 𝑊 ∈ NrmMod ∧ 𝐹 = ( ℂfld ↾s 𝐾 ) ) ∧ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ∧ ( norm ‘ 𝑊 ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) ) |
22 |
21
|
simp2bi |
⊢ ( 𝑊 ∈ ℂPreHil → ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ⊆ 𝐾 ) |
23 |
22
|
sselda |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( √ ‘ 𝐴 ) ∈ ( √ “ ( 𝐾 ∩ ( 0 [,) +∞ ) ) ) ) → ( √ ‘ 𝐴 ) ∈ 𝐾 ) |
24 |
17 23
|
sylan2 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝐾 ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( √ ‘ 𝐴 ) ∈ 𝐾 ) |