| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphsca.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | cphsca.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 3 |  | sqrtf | ⊢ √ : ℂ ⟶ ℂ | 
						
							| 4 |  | ffn | ⊢ ( √ : ℂ ⟶ ℂ  →  √  Fn  ℂ ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ √  Fn  ℂ | 
						
							| 6 |  | inss2 | ⊢ ( 𝐾  ∩  ( 0 [,) +∞ ) )  ⊆  ( 0 [,) +∞ ) | 
						
							| 7 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 8 |  | ax-resscn | ⊢ ℝ  ⊆  ℂ | 
						
							| 9 | 7 8 | sstri | ⊢ ( 0 [,) +∞ )  ⊆  ℂ | 
						
							| 10 | 6 9 | sstri | ⊢ ( 𝐾  ∩  ( 0 [,) +∞ ) )  ⊆  ℂ | 
						
							| 11 |  | simp1 | ⊢ ( ( 𝐴  ∈  𝐾  ∧  𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  𝐴  ∈  𝐾 ) | 
						
							| 12 |  | elrege0 | ⊢ ( 𝐴  ∈  ( 0 [,) +∞ )  ↔  ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 ) ) | 
						
							| 13 | 12 | biimpri | ⊢ ( ( 𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  𝐴  ∈  ( 0 [,) +∞ ) ) | 
						
							| 14 | 13 | 3adant1 | ⊢ ( ( 𝐴  ∈  𝐾  ∧  𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  𝐴  ∈  ( 0 [,) +∞ ) ) | 
						
							| 15 | 11 14 | elind | ⊢ ( ( 𝐴  ∈  𝐾  ∧  𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  𝐴  ∈  ( 𝐾  ∩  ( 0 [,) +∞ ) ) ) | 
						
							| 16 |  | fnfvima | ⊢ ( ( √  Fn  ℂ  ∧  ( 𝐾  ∩  ( 0 [,) +∞ ) )  ⊆  ℂ  ∧  𝐴  ∈  ( 𝐾  ∩  ( 0 [,) +∞ ) ) )  →  ( √ ‘ 𝐴 )  ∈  ( √  “  ( 𝐾  ∩  ( 0 [,) +∞ ) ) ) ) | 
						
							| 17 | 5 10 15 16 | mp3an12i | ⊢ ( ( 𝐴  ∈  𝐾  ∧  𝐴  ∈  ℝ  ∧  0  ≤  𝐴 )  →  ( √ ‘ 𝐴 )  ∈  ( √  “  ( 𝐾  ∩  ( 0 [,) +∞ ) ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 19 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 20 |  | eqid | ⊢ ( norm ‘ 𝑊 )  =  ( norm ‘ 𝑊 ) | 
						
							| 21 | 18 19 20 1 2 | iscph | ⊢ ( 𝑊  ∈  ℂPreHil  ↔  ( ( 𝑊  ∈  PreHil  ∧  𝑊  ∈  NrmMod  ∧  𝐹  =  ( ℂfld  ↾s  𝐾 ) )  ∧  ( √  “  ( 𝐾  ∩  ( 0 [,) +∞ ) ) )  ⊆  𝐾  ∧  ( norm ‘ 𝑊 )  =  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) ) | 
						
							| 22 | 21 | simp2bi | ⊢ ( 𝑊  ∈  ℂPreHil  →  ( √  “  ( 𝐾  ∩  ( 0 [,) +∞ ) ) )  ⊆  𝐾 ) | 
						
							| 23 | 22 | sselda | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  ( √ ‘ 𝐴 )  ∈  ( √  “  ( 𝐾  ∩  ( 0 [,) +∞ ) ) ) )  →  ( √ ‘ 𝐴 )  ∈  𝐾 ) | 
						
							| 24 | 17 23 | sylan2 | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  ( 𝐴  ∈  𝐾  ∧  𝐴  ∈  ℝ  ∧  0  ≤  𝐴 ) )  →  ( √ ‘ 𝐴 )  ∈  𝐾 ) |