| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cphsca.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 2 |  | cphsca.k | ⊢ 𝐾  =  ( Base ‘ 𝐹 ) | 
						
							| 3 |  | sqrt0 | ⊢ ( √ ‘ 0 )  =  0 | 
						
							| 4 |  | fveq2 | ⊢ ( 𝐴  =  0  →  ( √ ‘ 𝐴 )  =  ( √ ‘ 0 ) ) | 
						
							| 5 |  | id | ⊢ ( 𝐴  =  0  →  𝐴  =  0 ) | 
						
							| 6 | 3 4 5 | 3eqtr4a | ⊢ ( 𝐴  =  0  →  ( √ ‘ 𝐴 )  =  𝐴 ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  =  0 )  →  ( √ ‘ 𝐴 )  =  𝐴 ) | 
						
							| 8 |  | simpl2 | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  =  0 )  →  𝐴  ∈  𝐾 ) | 
						
							| 9 | 7 8 | eqeltrd | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  =  0 )  →  ( √ ‘ 𝐴 )  ∈  𝐾 ) | 
						
							| 10 |  | simpl1 | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  𝑊  ∈  ℂPreHil ) | 
						
							| 11 | 1 2 | cphsubrg | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝐾  ∈  ( SubRing ‘ ℂfld ) ) | 
						
							| 12 | 10 11 | syl | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  𝐾  ∈  ( SubRing ‘ ℂfld ) ) | 
						
							| 13 |  | cnfldbas | ⊢ ℂ  =  ( Base ‘ ℂfld ) | 
						
							| 14 | 13 | subrgss | ⊢ ( 𝐾  ∈  ( SubRing ‘ ℂfld )  →  𝐾  ⊆  ℂ ) | 
						
							| 15 | 12 14 | syl | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  𝐾  ⊆  ℂ ) | 
						
							| 16 |  | simpl2 | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  𝐴  ∈  𝐾 ) | 
						
							| 17 | 1 2 | cphabscl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾 )  →  ( abs ‘ 𝐴 )  ∈  𝐾 ) | 
						
							| 18 | 10 16 17 | syl2anc | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  𝐾 ) | 
						
							| 19 | 15 16 | sseldd | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  𝐴  ∈  ℂ ) | 
						
							| 20 | 19 | abscld | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 21 | 19 | absge0d | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  0  ≤  ( abs ‘ 𝐴 ) ) | 
						
							| 22 | 1 2 | cphsqrtcl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  ( ( abs ‘ 𝐴 )  ∈  𝐾  ∧  ( abs ‘ 𝐴 )  ∈  ℝ  ∧  0  ≤  ( abs ‘ 𝐴 ) ) )  →  ( √ ‘ ( abs ‘ 𝐴 ) )  ∈  𝐾 ) | 
						
							| 23 | 10 18 20 21 22 | syl13anc | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( √ ‘ ( abs ‘ 𝐴 ) )  ∈  𝐾 ) | 
						
							| 24 |  | cnfldadd | ⊢  +   =  ( +g ‘ ℂfld ) | 
						
							| 25 | 24 | subrgacl | ⊢ ( ( 𝐾  ∈  ( SubRing ‘ ℂfld )  ∧  ( abs ‘ 𝐴 )  ∈  𝐾  ∧  𝐴  ∈  𝐾 )  →  ( ( abs ‘ 𝐴 )  +  𝐴 )  ∈  𝐾 ) | 
						
							| 26 | 12 18 16 25 | syl3anc | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( ( abs ‘ 𝐴 )  +  𝐴 )  ∈  𝐾 ) | 
						
							| 27 | 1 2 | cphabscl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ∈  𝐾 )  →  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  ∈  𝐾 ) | 
						
							| 28 | 10 26 27 | syl2anc | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  ∈  𝐾 ) | 
						
							| 29 | 15 26 | sseldd | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( ( abs ‘ 𝐴 )  +  𝐴 )  ∈  ℂ ) | 
						
							| 30 |  | simpl3 | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ¬  - 𝐴  ∈  ℝ+ ) | 
						
							| 31 | 20 | recnd | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 32 | 31 19 | subnegd | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( ( abs ‘ 𝐴 )  −  - 𝐴 )  =  ( ( abs ‘ 𝐴 )  +  𝐴 ) ) | 
						
							| 33 | 32 | eqeq1d | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( ( ( abs ‘ 𝐴 )  −  - 𝐴 )  =  0  ↔  ( ( abs ‘ 𝐴 )  +  𝐴 )  =  0 ) ) | 
						
							| 34 | 19 | negcld | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  - 𝐴  ∈  ℂ ) | 
						
							| 35 | 31 34 | subeq0ad | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( ( ( abs ‘ 𝐴 )  −  - 𝐴 )  =  0  ↔  ( abs ‘ 𝐴 )  =  - 𝐴 ) ) | 
						
							| 36 | 33 35 | bitr3d | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  =  0  ↔  ( abs ‘ 𝐴 )  =  - 𝐴 ) ) | 
						
							| 37 |  | absrpcl | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐴  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  ℝ+ ) | 
						
							| 38 | 19 37 | sylancom | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  ℝ+ ) | 
						
							| 39 |  | eleq1 | ⊢ ( ( abs ‘ 𝐴 )  =  - 𝐴  →  ( ( abs ‘ 𝐴 )  ∈  ℝ+  ↔  - 𝐴  ∈  ℝ+ ) ) | 
						
							| 40 | 38 39 | syl5ibcom | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( ( abs ‘ 𝐴 )  =  - 𝐴  →  - 𝐴  ∈  ℝ+ ) ) | 
						
							| 41 | 36 40 | sylbid | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  =  0  →  - 𝐴  ∈  ℝ+ ) ) | 
						
							| 42 | 41 | necon3bd | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( ¬  - 𝐴  ∈  ℝ+  →  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 ) ) | 
						
							| 43 | 30 42 | mpd | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 ) | 
						
							| 44 | 29 43 | absne0d | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  ≠  0 ) | 
						
							| 45 | 1 2 | cphdivcl | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  ∈  𝐾  ∧  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  ∈  𝐾  ∧  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) )  ≠  0 ) )  →  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  ∈  𝐾 ) | 
						
							| 46 | 10 26 28 44 45 | syl13anc | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  ∈  𝐾 ) | 
						
							| 47 |  | cnfldmul | ⊢  ·   =  ( .r ‘ ℂfld ) | 
						
							| 48 | 47 | subrgmcl | ⊢ ( ( 𝐾  ∈  ( SubRing ‘ ℂfld )  ∧  ( √ ‘ ( abs ‘ 𝐴 ) )  ∈  𝐾  ∧  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) )  ∈  𝐾 )  →  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  ∈  𝐾 ) | 
						
							| 49 | 12 23 46 48 | syl3anc | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  ∈  𝐾 ) | 
						
							| 50 | 15 49 | sseldd | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  ∈  ℂ ) | 
						
							| 51 |  | eqid | ⊢ ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  =  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) | 
						
							| 52 | 51 | sqreulem | ⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ( abs ‘ 𝐴 )  +  𝐴 )  ≠  0 )  →  ( ( ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) ↑ 2 )  =  𝐴  ∧  0  ≤  ( ℜ ‘ ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) )  ∧  ( i  ·  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) )  ∉  ℝ+ ) ) | 
						
							| 53 | 19 43 52 | syl2anc | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( ( ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) ↑ 2 )  =  𝐴  ∧  0  ≤  ( ℜ ‘ ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) )  ∧  ( i  ·  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) )  ∉  ℝ+ ) ) | 
						
							| 54 | 53 | simp1d | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) ↑ 2 )  =  𝐴 ) | 
						
							| 55 | 53 | simp2d | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  0  ≤  ( ℜ ‘ ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) ) ) | 
						
							| 56 | 53 | simp3d | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( i  ·  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) )  ∉  ℝ+ ) | 
						
							| 57 |  | df-nel | ⊢ ( ( i  ·  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) )  ∉  ℝ+  ↔  ¬  ( i  ·  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) )  ∈  ℝ+ ) | 
						
							| 58 | 56 57 | sylib | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ¬  ( i  ·  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) ) )  ∈  ℝ+ ) | 
						
							| 59 | 50 19 54 55 58 | eqsqrtd | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( ( √ ‘ ( abs ‘ 𝐴 ) )  ·  ( ( ( abs ‘ 𝐴 )  +  𝐴 )  /  ( abs ‘ ( ( abs ‘ 𝐴 )  +  𝐴 ) ) ) )  =  ( √ ‘ 𝐴 ) ) | 
						
							| 60 | 59 49 | eqeltrrd | ⊢ ( ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  ∧  𝐴  ≠  0 )  →  ( √ ‘ 𝐴 )  ∈  𝐾 ) | 
						
							| 61 | 9 60 | pm2.61dane | ⊢ ( ( 𝑊  ∈  ℂPreHil  ∧  𝐴  ∈  𝐾  ∧  ¬  - 𝐴  ∈  ℝ+ )  →  ( √ ‘ 𝐴 )  ∈  𝐾 ) |