Step |
Hyp |
Ref |
Expression |
1 |
|
cphsca.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
2 |
|
cphsca.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
3 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → 𝑊 ∈ ℂPreHil ) |
4 |
1 2
|
cphsubrg |
⊢ ( 𝑊 ∈ ℂPreHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
5 |
3 4
|
syl |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
6 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
7 |
6
|
subrgss |
⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ⊆ ℂ ) |
8 |
5 7
|
syl |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → 𝐾 ⊆ ℂ ) |
9 |
|
simpl3 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → 𝐴 ∈ 𝐾 ) |
10 |
8 9
|
sseldd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → 𝐴 ∈ ℂ ) |
11 |
10
|
negnegd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → - - 𝐴 = 𝐴 ) |
12 |
11
|
fveq2d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( √ ‘ - - 𝐴 ) = ( √ ‘ 𝐴 ) ) |
13 |
|
rpre |
⊢ ( - 𝐴 ∈ ℝ+ → - 𝐴 ∈ ℝ ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → - 𝐴 ∈ ℝ ) |
15 |
|
rpge0 |
⊢ ( - 𝐴 ∈ ℝ+ → 0 ≤ - 𝐴 ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → 0 ≤ - 𝐴 ) |
17 |
14 16
|
sqrtnegd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( √ ‘ - - 𝐴 ) = ( i · ( √ ‘ - 𝐴 ) ) ) |
18 |
12 17
|
eqtr3d |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( √ ‘ 𝐴 ) = ( i · ( √ ‘ - 𝐴 ) ) ) |
19 |
|
simpl2 |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → i ∈ 𝐾 ) |
20 |
|
cnfldneg |
⊢ ( 𝐴 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = - 𝐴 ) |
21 |
10 20
|
syl |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = - 𝐴 ) |
22 |
|
subrgsubg |
⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ∈ ( SubGrp ‘ ℂfld ) ) |
23 |
5 22
|
syl |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → 𝐾 ∈ ( SubGrp ‘ ℂfld ) ) |
24 |
|
eqid |
⊢ ( invg ‘ ℂfld ) = ( invg ‘ ℂfld ) |
25 |
24
|
subginvcl |
⊢ ( ( 𝐾 ∈ ( SubGrp ‘ ℂfld ) ∧ 𝐴 ∈ 𝐾 ) → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) ∈ 𝐾 ) |
26 |
23 9 25
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) ∈ 𝐾 ) |
27 |
21 26
|
eqeltrrd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → - 𝐴 ∈ 𝐾 ) |
28 |
1 2
|
cphsqrtcl |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( - 𝐴 ∈ 𝐾 ∧ - 𝐴 ∈ ℝ ∧ 0 ≤ - 𝐴 ) ) → ( √ ‘ - 𝐴 ) ∈ 𝐾 ) |
29 |
3 27 14 16 28
|
syl13anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( √ ‘ - 𝐴 ) ∈ 𝐾 ) |
30 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
31 |
30
|
subrgmcl |
⊢ ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ i ∈ 𝐾 ∧ ( √ ‘ - 𝐴 ) ∈ 𝐾 ) → ( i · ( √ ‘ - 𝐴 ) ) ∈ 𝐾 ) |
32 |
5 19 29 31
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( i · ( √ ‘ - 𝐴 ) ) ∈ 𝐾 ) |
33 |
18 32
|
eqeltrd |
⊢ ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( √ ‘ 𝐴 ) ∈ 𝐾 ) |
34 |
33
|
ex |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) → ( - 𝐴 ∈ ℝ+ → ( √ ‘ 𝐴 ) ∈ 𝐾 ) ) |
35 |
1 2
|
cphsqrtcl2 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) → ( √ ‘ 𝐴 ) ∈ 𝐾 ) |
36 |
35
|
3expia |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴 ∈ 𝐾 ) → ( ¬ - 𝐴 ∈ ℝ+ → ( √ ‘ 𝐴 ) ∈ 𝐾 ) ) |
37 |
36
|
3adant2 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) → ( ¬ - 𝐴 ∈ ℝ+ → ( √ ‘ 𝐴 ) ∈ 𝐾 ) ) |
38 |
34 37
|
pm2.61d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ) → ( √ ‘ 𝐴 ) ∈ 𝐾 ) |