Metamath Proof Explorer


Theorem cphsqrtcl3

Description: If the scalar field of a subcomplex pre-Hilbert space contains the imaginary unit _i , then it is closed under square roots (i.e., it is quadratically closed). (Contributed by Mario Carneiro, 11-Oct-2015)

Ref Expression
Hypotheses cphsca.f 𝐹 = ( Scalar ‘ 𝑊 )
cphsca.k 𝐾 = ( Base ‘ 𝐹 )
Assertion cphsqrtcl3 ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) → ( √ ‘ 𝐴 ) ∈ 𝐾 )

Proof

Step Hyp Ref Expression
1 cphsca.f 𝐹 = ( Scalar ‘ 𝑊 )
2 cphsca.k 𝐾 = ( Base ‘ 𝐹 )
3 simpl1 ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → 𝑊 ∈ ℂPreHil )
4 1 2 cphsubrg ( 𝑊 ∈ ℂPreHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) )
5 3 4 syl ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → 𝐾 ∈ ( SubRing ‘ ℂfld ) )
6 cnfldbas ℂ = ( Base ‘ ℂfld )
7 6 subrgss ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ⊆ ℂ )
8 5 7 syl ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → 𝐾 ⊆ ℂ )
9 simpl3 ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → 𝐴𝐾 )
10 8 9 sseldd ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → 𝐴 ∈ ℂ )
11 10 negnegd ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → - - 𝐴 = 𝐴 )
12 11 fveq2d ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( √ ‘ - - 𝐴 ) = ( √ ‘ 𝐴 ) )
13 rpre ( - 𝐴 ∈ ℝ+ → - 𝐴 ∈ ℝ )
14 13 adantl ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → - 𝐴 ∈ ℝ )
15 rpge0 ( - 𝐴 ∈ ℝ+ → 0 ≤ - 𝐴 )
16 15 adantl ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → 0 ≤ - 𝐴 )
17 14 16 sqrtnegd ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( √ ‘ - - 𝐴 ) = ( i · ( √ ‘ - 𝐴 ) ) )
18 12 17 eqtr3d ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( √ ‘ 𝐴 ) = ( i · ( √ ‘ - 𝐴 ) ) )
19 simpl2 ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → i ∈ 𝐾 )
20 cnfldneg ( 𝐴 ∈ ℂ → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = - 𝐴 )
21 10 20 syl ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) = - 𝐴 )
22 subrgsubg ( 𝐾 ∈ ( SubRing ‘ ℂfld ) → 𝐾 ∈ ( SubGrp ‘ ℂfld ) )
23 5 22 syl ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → 𝐾 ∈ ( SubGrp ‘ ℂfld ) )
24 eqid ( invg ‘ ℂfld ) = ( invg ‘ ℂfld )
25 24 subginvcl ( ( 𝐾 ∈ ( SubGrp ‘ ℂfld ) ∧ 𝐴𝐾 ) → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) ∈ 𝐾 )
26 23 9 25 syl2anc ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( ( invg ‘ ℂfld ) ‘ 𝐴 ) ∈ 𝐾 )
27 21 26 eqeltrrd ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → - 𝐴𝐾 )
28 1 2 cphsqrtcl ( ( 𝑊 ∈ ℂPreHil ∧ ( - 𝐴𝐾 ∧ - 𝐴 ∈ ℝ ∧ 0 ≤ - 𝐴 ) ) → ( √ ‘ - 𝐴 ) ∈ 𝐾 )
29 3 27 14 16 28 syl13anc ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( √ ‘ - 𝐴 ) ∈ 𝐾 )
30 cnfldmul · = ( .r ‘ ℂfld )
31 30 subrgmcl ( ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ∧ i ∈ 𝐾 ∧ ( √ ‘ - 𝐴 ) ∈ 𝐾 ) → ( i · ( √ ‘ - 𝐴 ) ) ∈ 𝐾 )
32 5 19 29 31 syl3anc ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( i · ( √ ‘ - 𝐴 ) ) ∈ 𝐾 )
33 18 32 eqeltrd ( ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) ∧ - 𝐴 ∈ ℝ+ ) → ( √ ‘ 𝐴 ) ∈ 𝐾 )
34 33 ex ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) → ( - 𝐴 ∈ ℝ+ → ( √ ‘ 𝐴 ) ∈ 𝐾 ) )
35 1 2 cphsqrtcl2 ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ∧ ¬ - 𝐴 ∈ ℝ+ ) → ( √ ‘ 𝐴 ) ∈ 𝐾 )
36 35 3expia ( ( 𝑊 ∈ ℂPreHil ∧ 𝐴𝐾 ) → ( ¬ - 𝐴 ∈ ℝ+ → ( √ ‘ 𝐴 ) ∈ 𝐾 ) )
37 36 3adant2 ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) → ( ¬ - 𝐴 ∈ ℝ+ → ( √ ‘ 𝐴 ) ∈ 𝐾 ) )
38 34 37 pm2.61d ( ( 𝑊 ∈ ℂPreHil ∧ i ∈ 𝐾𝐴𝐾 ) → ( √ ‘ 𝐴 ) ∈ 𝐾 )