Metamath Proof Explorer


Theorem cphsscph

Description: A subspace of a subcomplex pre-Hilbert space is a subcomplex pre-Hilbert space. (Contributed by NM, 1-Feb-2008) (Revised by AV, 25-Sep-2022)

Ref Expression
Hypotheses cphsscph.x 𝑋 = ( 𝑊s 𝑈 )
cphsscph.s 𝑆 = ( LSubSp ‘ 𝑊 )
Assertion cphsscph ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → 𝑋 ∈ ℂPreHil )

Proof

Step Hyp Ref Expression
1 cphsscph.x 𝑋 = ( 𝑊s 𝑈 )
2 cphsscph.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 cphphl ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil )
4 1 2 phlssphl ( ( 𝑊 ∈ PreHil ∧ 𝑈𝑆 ) → 𝑋 ∈ PreHil )
5 3 4 sylan ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → 𝑋 ∈ PreHil )
6 cphnlm ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ NrmMod )
7 1 2 lssnlm ( ( 𝑊 ∈ NrmMod ∧ 𝑈𝑆 ) → 𝑋 ∈ NrmMod )
8 6 7 sylan ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → 𝑋 ∈ NrmMod )
9 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
10 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
11 9 10 cphsca ( 𝑊 ∈ ℂPreHil → ( Scalar ‘ 𝑊 ) = ( ℂflds ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
12 11 adantr ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( Scalar ‘ 𝑊 ) = ( ℂflds ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
13 1 9 resssca ( 𝑈𝑆 → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑋 ) )
14 13 fveq2d ( 𝑈𝑆 → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) ) )
15 14 oveq2d ( 𝑈𝑆 → ( ℂflds ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) = ( ℂflds ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) )
16 13 15 eqeq12d ( 𝑈𝑆 → ( ( Scalar ‘ 𝑊 ) = ( ℂflds ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( Scalar ‘ 𝑋 ) = ( ℂflds ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) )
17 16 adantl ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( ( Scalar ‘ 𝑊 ) = ( ℂflds ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ↔ ( Scalar ‘ 𝑋 ) = ( ℂflds ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) )
18 12 17 mpbid ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( Scalar ‘ 𝑋 ) = ( ℂflds ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) )
19 5 8 18 3jca ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( 𝑋 ∈ PreHil ∧ 𝑋 ∈ NrmMod ∧ ( Scalar ‘ 𝑋 ) = ( ℂflds ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) )
20 simpl ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → 𝑊 ∈ ℂPreHil )
21 elinel1 ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) → 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
22 21 adantr ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) → 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
23 elinel2 ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) → 𝑞 ∈ ( 0 [,) +∞ ) )
24 elrege0 ( 𝑞 ∈ ( 0 [,) +∞ ) ↔ ( 𝑞 ∈ ℝ ∧ 0 ≤ 𝑞 ) )
25 24 simplbi ( 𝑞 ∈ ( 0 [,) +∞ ) → 𝑞 ∈ ℝ )
26 23 25 syl ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) → 𝑞 ∈ ℝ )
27 26 adantr ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) → 𝑞 ∈ ℝ )
28 24 simprbi ( 𝑞 ∈ ( 0 [,) +∞ ) → 0 ≤ 𝑞 )
29 23 28 syl ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) → 0 ≤ 𝑞 )
30 29 adantr ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) → 0 ≤ 𝑞 )
31 22 27 30 3jca ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) → ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑞 ∈ ℝ ∧ 0 ≤ 𝑞 ) )
32 9 10 cphsqrtcl ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝑞 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑞 ∈ ℝ ∧ 0 ≤ 𝑞 ) ) → ( √ ‘ 𝑞 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
33 20 31 32 syl2anr ( ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) ∧ ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) ) → ( √ ‘ 𝑞 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
34 eleq1 ( ( √ ‘ 𝑞 ) = 𝑥 → ( ( √ ‘ 𝑞 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
35 34 adantl ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) → ( ( √ ‘ 𝑞 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
36 35 adantr ( ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) ∧ ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) ) → ( ( √ ‘ 𝑞 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
37 33 36 mpbid ( ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) ∧ ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
38 37 ex ( ( 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ∧ ( √ ‘ 𝑞 ) = 𝑥 ) → ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
39 38 rexlimiva ( ∃ 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ( √ ‘ 𝑞 ) = 𝑥 → ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
40 df-sqrt √ = ( 𝑥 ∈ ℂ ↦ ( 𝑐 ∈ ℂ ( ( 𝑐 ↑ 2 ) = 𝑥 ∧ 0 ≤ ( ℜ ‘ 𝑐 ) ∧ ( i · 𝑐 ) ∉ ℝ+ ) ) )
41 40 funmpt2 Fun √
42 fvelima ( ( Fun √ ∧ 𝑥 ∈ ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) ) → ∃ 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ( √ ‘ 𝑞 ) = 𝑥 )
43 41 42 mpan ( 𝑥 ∈ ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) → ∃ 𝑞 ∈ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ( √ ‘ 𝑞 ) = 𝑥 )
44 39 43 syl11 ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( 𝑥 ∈ ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
45 44 ssrdv ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
46 14 ineq1d ( 𝑈𝑆 → ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) = ( ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∩ ( 0 [,) +∞ ) ) )
47 46 imaeq2d ( 𝑈𝑆 → ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) = ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∩ ( 0 [,) +∞ ) ) ) )
48 47 14 sseq12d ( 𝑈𝑆 → ( ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) )
49 48 adantl ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) )
50 45 49 mpbid ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑋 ) ) )
51 cphlmod ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod )
52 2 lsssubg ( ( 𝑊 ∈ LMod ∧ 𝑈𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) )
53 51 52 sylan ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → 𝑈 ∈ ( SubGrp ‘ 𝑊 ) )
54 eqid ( norm ‘ 𝑊 ) = ( norm ‘ 𝑊 )
55 eqid ( norm ‘ 𝑋 ) = ( norm ‘ 𝑋 )
56 1 54 55 subgnm ( 𝑈 ∈ ( SubGrp ‘ 𝑊 ) → ( norm ‘ 𝑋 ) = ( ( norm ‘ 𝑊 ) ↾ 𝑈 ) )
57 53 56 syl ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( norm ‘ 𝑋 ) = ( ( norm ‘ 𝑊 ) ↾ 𝑈 ) )
58 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
59 eqid ( ·𝑖𝑊 ) = ( ·𝑖𝑊 )
60 58 59 54 cphnmfval ( 𝑊 ∈ ℂPreHil → ( norm ‘ 𝑊 ) = ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖𝑊 ) 𝑏 ) ) ) )
61 60 adantr ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( norm ‘ 𝑊 ) = ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖𝑊 ) 𝑏 ) ) ) )
62 1 59 ressip ( 𝑈𝑆 → ( ·𝑖𝑊 ) = ( ·𝑖𝑋 ) )
63 62 adantl ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( ·𝑖𝑊 ) = ( ·𝑖𝑋 ) )
64 63 oveqd ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( 𝑏 ( ·𝑖𝑊 ) 𝑏 ) = ( 𝑏 ( ·𝑖𝑋 ) 𝑏 ) )
65 64 fveq2d ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( √ ‘ ( 𝑏 ( ·𝑖𝑊 ) 𝑏 ) ) = ( √ ‘ ( 𝑏 ( ·𝑖𝑋 ) 𝑏 ) ) )
66 65 mpteq2dv ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖𝑊 ) 𝑏 ) ) ) = ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖𝑋 ) 𝑏 ) ) ) )
67 61 66 eqtrd ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( norm ‘ 𝑊 ) = ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖𝑋 ) 𝑏 ) ) ) )
68 58 2 lssss ( 𝑈𝑆𝑈 ⊆ ( Base ‘ 𝑊 ) )
69 68 adantl ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → 𝑈 ⊆ ( Base ‘ 𝑊 ) )
70 dfss ( 𝑈 ⊆ ( Base ‘ 𝑊 ) ↔ 𝑈 = ( 𝑈 ∩ ( Base ‘ 𝑊 ) ) )
71 69 70 sylib ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → 𝑈 = ( 𝑈 ∩ ( Base ‘ 𝑊 ) ) )
72 67 71 reseq12d ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( ( norm ‘ 𝑊 ) ↾ 𝑈 ) = ( ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖𝑋 ) 𝑏 ) ) ) ↾ ( 𝑈 ∩ ( Base ‘ 𝑊 ) ) ) )
73 1 58 ressbas ( 𝑈𝑆 → ( 𝑈 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ 𝑋 ) )
74 73 adantl ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( 𝑈 ∩ ( Base ‘ 𝑊 ) ) = ( Base ‘ 𝑋 ) )
75 74 reseq2d ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖𝑋 ) 𝑏 ) ) ) ↾ ( 𝑈 ∩ ( Base ‘ 𝑊 ) ) ) = ( ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖𝑋 ) 𝑏 ) ) ) ↾ ( Base ‘ 𝑋 ) ) )
76 72 75 eqtrd ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( ( norm ‘ 𝑊 ) ↾ 𝑈 ) = ( ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖𝑋 ) 𝑏 ) ) ) ↾ ( Base ‘ 𝑋 ) ) )
77 1 58 ressbasss ( Base ‘ 𝑋 ) ⊆ ( Base ‘ 𝑊 )
78 77 a1i ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( Base ‘ 𝑋 ) ⊆ ( Base ‘ 𝑊 ) )
79 78 resmptd ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( ( 𝑏 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖𝑋 ) 𝑏 ) ) ) ↾ ( Base ‘ 𝑋 ) ) = ( 𝑏 ∈ ( Base ‘ 𝑋 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖𝑋 ) 𝑏 ) ) ) )
80 57 76 79 3eqtrd ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → ( norm ‘ 𝑋 ) = ( 𝑏 ∈ ( Base ‘ 𝑋 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖𝑋 ) 𝑏 ) ) ) )
81 eqid ( Base ‘ 𝑋 ) = ( Base ‘ 𝑋 )
82 eqid ( ·𝑖𝑋 ) = ( ·𝑖𝑋 )
83 eqid ( Scalar ‘ 𝑋 ) = ( Scalar ‘ 𝑋 )
84 eqid ( Base ‘ ( Scalar ‘ 𝑋 ) ) = ( Base ‘ ( Scalar ‘ 𝑋 ) )
85 81 82 55 83 84 iscph ( 𝑋 ∈ ℂPreHil ↔ ( ( 𝑋 ∈ PreHil ∧ 𝑋 ∈ NrmMod ∧ ( Scalar ‘ 𝑋 ) = ( ℂflds ( Base ‘ ( Scalar ‘ 𝑋 ) ) ) ) ∧ ( √ “ ( ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∩ ( 0 [,) +∞ ) ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑋 ) ) ∧ ( norm ‘ 𝑋 ) = ( 𝑏 ∈ ( Base ‘ 𝑋 ) ↦ ( √ ‘ ( 𝑏 ( ·𝑖𝑋 ) 𝑏 ) ) ) ) )
86 19 50 80 85 syl3anbrc ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → 𝑋 ∈ ℂPreHil )