Metamath Proof Explorer


Theorem cphssphl

Description: A Banach subspace of a subcomplex pre-Hilbert space is a subcomplex Hilbert space. (Contributed by NM, 11-Apr-2008) (Revised by AV, 25-Sep-2022)

Ref Expression
Hypotheses cphssphl.x 𝑋 = ( 𝑊s 𝑈 )
cphssphl.s 𝑆 = ( LSubSp ‘ 𝑊 )
Assertion cphssphl ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆𝑋 ∈ Ban ) → 𝑋 ∈ ℂHil )

Proof

Step Hyp Ref Expression
1 cphssphl.x 𝑋 = ( 𝑊s 𝑈 )
2 cphssphl.s 𝑆 = ( LSubSp ‘ 𝑊 )
3 simp3 ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆𝑋 ∈ Ban ) → 𝑋 ∈ Ban )
4 1 2 cphsscph ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆 ) → 𝑋 ∈ ℂPreHil )
5 4 3adant3 ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆𝑋 ∈ Ban ) → 𝑋 ∈ ℂPreHil )
6 ishl ( 𝑋 ∈ ℂHil ↔ ( 𝑋 ∈ Ban ∧ 𝑋 ∈ ℂPreHil ) )
7 3 5 6 sylanbrc ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈𝑆𝑋 ∈ Ban ) → 𝑋 ∈ ℂHil )