Description: A Banach subspace of a subcomplex pre-Hilbert space is a subcomplex Hilbert space. (Contributed by NM, 11-Apr-2008) (Revised by AV, 25-Sep-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cphssphl.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| cphssphl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | cphssphl | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ Ban ) → 𝑋 ∈ ℂHil ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cphssphl.x | ⊢ 𝑋 = ( 𝑊 ↾s 𝑈 ) | |
| 2 | cphssphl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | simp3 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ Ban ) → 𝑋 ∈ Ban ) | |
| 4 | 1 2 | cphsscph | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ) → 𝑋 ∈ ℂPreHil ) | 
| 5 | 4 | 3adant3 | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ Ban ) → 𝑋 ∈ ℂPreHil ) | 
| 6 | ishl | ⊢ ( 𝑋 ∈ ℂHil ↔ ( 𝑋 ∈ Ban ∧ 𝑋 ∈ ℂPreHil ) ) | |
| 7 | 3 5 6 | sylanbrc | ⊢ ( ( 𝑊 ∈ ℂPreHil ∧ 𝑈 ∈ 𝑆 ∧ 𝑋 ∈ Ban ) → 𝑋 ∈ ℂHil ) |