Step |
Hyp |
Ref |
Expression |
1 |
|
cphipcj.h |
⊢ , = ( ·𝑖 ‘ 𝑊 ) |
2 |
|
cphipcj.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
3 |
|
cphsubdir.m |
⊢ − = ( -g ‘ 𝑊 ) |
4 |
|
cphphl |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ PreHil ) |
5 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
6 |
|
eqid |
⊢ ( -g ‘ ( Scalar ‘ 𝑊 ) ) = ( -g ‘ ( Scalar ‘ 𝑊 ) ) |
7 |
5 1 2 3 6
|
ipsubdi |
⊢ ( ( 𝑊 ∈ PreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 , ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 , 𝐵 ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐴 , 𝐶 ) ) ) |
8 |
4 7
|
sylan |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 , ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 , 𝐵 ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐴 , 𝐶 ) ) ) |
9 |
|
cphclm |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ ℂMod ) |
10 |
9
|
adantr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝑊 ∈ ℂMod ) |
11 |
4
|
adantr |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝑊 ∈ PreHil ) |
12 |
|
simpr1 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐴 ∈ 𝑉 ) |
13 |
|
simpr2 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐵 ∈ 𝑉 ) |
14 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
15 |
5 1 2 14
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
16 |
11 12 13 15
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
17 |
|
simpr3 |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → 𝐶 ∈ 𝑉 ) |
18 |
5 1 2 14
|
ipcl |
⊢ ( ( 𝑊 ∈ PreHil ∧ 𝐴 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 , 𝐶 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
19 |
11 12 17 18
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 , 𝐶 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
20 |
5 14
|
clmsub |
⊢ ( ( 𝑊 ∈ ℂMod ∧ ( 𝐴 , 𝐵 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ ( 𝐴 , 𝐶 ) ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) → ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝐶 ) ) = ( ( 𝐴 , 𝐵 ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐴 , 𝐶 ) ) ) |
21 |
10 16 19 20
|
syl3anc |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝐶 ) ) = ( ( 𝐴 , 𝐵 ) ( -g ‘ ( Scalar ‘ 𝑊 ) ) ( 𝐴 , 𝐶 ) ) ) |
22 |
8 21
|
eqtr4d |
⊢ ( ( 𝑊 ∈ ℂPreHil ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑉 ) ) → ( 𝐴 , ( 𝐵 − 𝐶 ) ) = ( ( 𝐴 , 𝐵 ) − ( 𝐴 , 𝐶 ) ) ) |