Metamath Proof Explorer


Theorem cphsubrg

Description: The scalar field of a subcomplex pre-Hilbert space is a subring of CCfld . (Contributed by Mario Carneiro, 8-Oct-2015)

Ref Expression
Hypotheses cphsca.f 𝐹 = ( Scalar ‘ 𝑊 )
cphsca.k 𝐾 = ( Base ‘ 𝐹 )
Assertion cphsubrg ( 𝑊 ∈ ℂPreHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) )

Proof

Step Hyp Ref Expression
1 cphsca.f 𝐹 = ( Scalar ‘ 𝑊 )
2 cphsca.k 𝐾 = ( Base ‘ 𝐹 )
3 1 2 cphsca ( 𝑊 ∈ ℂPreHil → 𝐹 = ( ℂflds 𝐾 ) )
4 cphlvec ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LVec )
5 1 lvecdrng ( 𝑊 ∈ LVec → 𝐹 ∈ DivRing )
6 4 5 syl ( 𝑊 ∈ ℂPreHil → 𝐹 ∈ DivRing )
7 2 3 6 cphsubrglem ( 𝑊 ∈ ℂPreHil → ( 𝐹 = ( ℂflds 𝐾 ) ∧ 𝐾 = ( 𝐾 ∩ ℂ ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) )
8 7 simp3d ( 𝑊 ∈ ℂPreHil → 𝐾 ∈ ( SubRing ‘ ℂfld ) )