Step |
Hyp |
Ref |
Expression |
1 |
|
cphsubrglem.k |
⊢ 𝐾 = ( Base ‘ 𝐹 ) |
2 |
|
cphsubrglem.1 |
⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐴 ) ) |
3 |
|
cphsubrglem.2 |
⊢ ( 𝜑 → 𝐹 ∈ DivRing ) |
4 |
2
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) |
5 |
|
drngring |
⊢ ( 𝐹 ∈ DivRing → 𝐹 ∈ Ring ) |
6 |
3 5
|
syl |
⊢ ( 𝜑 → 𝐹 ∈ Ring ) |
7 |
2 6
|
eqeltrrd |
⊢ ( 𝜑 → ( ℂfld ↾s 𝐴 ) ∈ Ring ) |
8 |
|
eqid |
⊢ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) = ( Base ‘ ( ℂfld ↾s 𝐴 ) ) |
9 |
|
eqid |
⊢ ( 0g ‘ ( ℂfld ↾s 𝐴 ) ) = ( 0g ‘ ( ℂfld ↾s 𝐴 ) ) |
10 |
8 9
|
ring0cl |
⊢ ( ( ℂfld ↾s 𝐴 ) ∈ Ring → ( 0g ‘ ( ℂfld ↾s 𝐴 ) ) ∈ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) |
11 |
|
reldmress |
⊢ Rel dom ↾s |
12 |
|
eqid |
⊢ ( ℂfld ↾s 𝐴 ) = ( ℂfld ↾s 𝐴 ) |
13 |
11 12 8
|
elbasov |
⊢ ( ( 0g ‘ ( ℂfld ↾s 𝐴 ) ) ∈ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) → ( ℂfld ∈ V ∧ 𝐴 ∈ V ) ) |
14 |
7 10 13
|
3syl |
⊢ ( 𝜑 → ( ℂfld ∈ V ∧ 𝐴 ∈ V ) ) |
15 |
14
|
simprd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
16 |
|
cnfldbas |
⊢ ℂ = ( Base ‘ ℂfld ) |
17 |
12 16
|
ressbas |
⊢ ( 𝐴 ∈ V → ( 𝐴 ∩ ℂ ) = ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) |
18 |
15 17
|
syl |
⊢ ( 𝜑 → ( 𝐴 ∩ ℂ ) = ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ) |
19 |
4 18
|
eqtr4d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( 𝐴 ∩ ℂ ) ) |
20 |
1 19
|
syl5eq |
⊢ ( 𝜑 → 𝐾 = ( 𝐴 ∩ ℂ ) ) |
21 |
20
|
oveq2d |
⊢ ( 𝜑 → ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s ( 𝐴 ∩ ℂ ) ) ) |
22 |
16
|
ressinbas |
⊢ ( 𝐴 ∈ V → ( ℂfld ↾s 𝐴 ) = ( ℂfld ↾s ( 𝐴 ∩ ℂ ) ) ) |
23 |
15 22
|
syl |
⊢ ( 𝜑 → ( ℂfld ↾s 𝐴 ) = ( ℂfld ↾s ( 𝐴 ∩ ℂ ) ) ) |
24 |
21 23
|
eqtr4d |
⊢ ( 𝜑 → ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐴 ) ) |
25 |
2 24
|
eqtr4d |
⊢ ( 𝜑 → 𝐹 = ( ℂfld ↾s 𝐾 ) ) |
26 |
25 6
|
eqeltrrd |
⊢ ( 𝜑 → ( ℂfld ↾s 𝐾 ) ∈ Ring ) |
27 |
|
cnring |
⊢ ℂfld ∈ Ring |
28 |
26 27
|
jctil |
⊢ ( 𝜑 → ( ℂfld ∈ Ring ∧ ( ℂfld ↾s 𝐾 ) ∈ Ring ) ) |
29 |
12 16
|
ressbasss |
⊢ ( Base ‘ ( ℂfld ↾s 𝐴 ) ) ⊆ ℂ |
30 |
4 29
|
eqsstrdi |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) ⊆ ℂ ) |
31 |
1 30
|
eqsstrid |
⊢ ( 𝜑 → 𝐾 ⊆ ℂ ) |
32 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
33 |
|
eqid |
⊢ ( 1r ‘ 𝐹 ) = ( 1r ‘ 𝐹 ) |
34 |
32 33
|
drngunz |
⊢ ( 𝐹 ∈ DivRing → ( 1r ‘ 𝐹 ) ≠ ( 0g ‘ 𝐹 ) ) |
35 |
3 34
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ≠ ( 0g ‘ 𝐹 ) ) |
36 |
25
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ 𝐹 ) = ( 0g ‘ ( ℂfld ↾s 𝐾 ) ) ) |
37 |
|
ringgrp |
⊢ ( ℂfld ∈ Ring → ℂfld ∈ Grp ) |
38 |
27 37
|
mp1i |
⊢ ( 𝜑 → ℂfld ∈ Grp ) |
39 |
|
ringgrp |
⊢ ( ( ℂfld ↾s 𝐾 ) ∈ Ring → ( ℂfld ↾s 𝐾 ) ∈ Grp ) |
40 |
26 39
|
syl |
⊢ ( 𝜑 → ( ℂfld ↾s 𝐾 ) ∈ Grp ) |
41 |
16
|
issubg |
⊢ ( 𝐾 ∈ ( SubGrp ‘ ℂfld ) ↔ ( ℂfld ∈ Grp ∧ 𝐾 ⊆ ℂ ∧ ( ℂfld ↾s 𝐾 ) ∈ Grp ) ) |
42 |
38 31 40 41
|
syl3anbrc |
⊢ ( 𝜑 → 𝐾 ∈ ( SubGrp ‘ ℂfld ) ) |
43 |
|
eqid |
⊢ ( ℂfld ↾s 𝐾 ) = ( ℂfld ↾s 𝐾 ) |
44 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
45 |
43 44
|
subg0 |
⊢ ( 𝐾 ∈ ( SubGrp ‘ ℂfld ) → 0 = ( 0g ‘ ( ℂfld ↾s 𝐾 ) ) ) |
46 |
42 45
|
syl |
⊢ ( 𝜑 → 0 = ( 0g ‘ ( ℂfld ↾s 𝐾 ) ) ) |
47 |
36 46
|
eqtr4d |
⊢ ( 𝜑 → ( 0g ‘ 𝐹 ) = 0 ) |
48 |
35 47
|
neeqtrd |
⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ≠ 0 ) |
49 |
48
|
neneqd |
⊢ ( 𝜑 → ¬ ( 1r ‘ 𝐹 ) = 0 ) |
50 |
1 33
|
ringidcl |
⊢ ( 𝐹 ∈ Ring → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
51 |
6 50
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ∈ 𝐾 ) |
52 |
31 51
|
sseldd |
⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ∈ ℂ ) |
53 |
52
|
sqvald |
⊢ ( 𝜑 → ( ( 1r ‘ 𝐹 ) ↑ 2 ) = ( ( 1r ‘ 𝐹 ) · ( 1r ‘ 𝐹 ) ) ) |
54 |
25
|
fveq2d |
⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) = ( 1r ‘ ( ℂfld ↾s 𝐾 ) ) ) |
55 |
54
|
oveq1d |
⊢ ( 𝜑 → ( ( 1r ‘ 𝐹 ) · ( 1r ‘ 𝐹 ) ) = ( ( 1r ‘ ( ℂfld ↾s 𝐾 ) ) · ( 1r ‘ 𝐹 ) ) ) |
56 |
25
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( ℂfld ↾s 𝐾 ) ) ) |
57 |
1 56
|
syl5eq |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( ℂfld ↾s 𝐾 ) ) ) |
58 |
51 57
|
eleqtrd |
⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) ∈ ( Base ‘ ( ℂfld ↾s 𝐾 ) ) ) |
59 |
|
eqid |
⊢ ( Base ‘ ( ℂfld ↾s 𝐾 ) ) = ( Base ‘ ( ℂfld ↾s 𝐾 ) ) |
60 |
1
|
fvexi |
⊢ 𝐾 ∈ V |
61 |
|
cnfldmul |
⊢ · = ( .r ‘ ℂfld ) |
62 |
43 61
|
ressmulr |
⊢ ( 𝐾 ∈ V → · = ( .r ‘ ( ℂfld ↾s 𝐾 ) ) ) |
63 |
60 62
|
ax-mp |
⊢ · = ( .r ‘ ( ℂfld ↾s 𝐾 ) ) |
64 |
|
eqid |
⊢ ( 1r ‘ ( ℂfld ↾s 𝐾 ) ) = ( 1r ‘ ( ℂfld ↾s 𝐾 ) ) |
65 |
59 63 64
|
ringlidm |
⊢ ( ( ( ℂfld ↾s 𝐾 ) ∈ Ring ∧ ( 1r ‘ 𝐹 ) ∈ ( Base ‘ ( ℂfld ↾s 𝐾 ) ) ) → ( ( 1r ‘ ( ℂfld ↾s 𝐾 ) ) · ( 1r ‘ 𝐹 ) ) = ( 1r ‘ 𝐹 ) ) |
66 |
26 58 65
|
syl2anc |
⊢ ( 𝜑 → ( ( 1r ‘ ( ℂfld ↾s 𝐾 ) ) · ( 1r ‘ 𝐹 ) ) = ( 1r ‘ 𝐹 ) ) |
67 |
53 55 66
|
3eqtrd |
⊢ ( 𝜑 → ( ( 1r ‘ 𝐹 ) ↑ 2 ) = ( 1r ‘ 𝐹 ) ) |
68 |
|
sq01 |
⊢ ( ( 1r ‘ 𝐹 ) ∈ ℂ → ( ( ( 1r ‘ 𝐹 ) ↑ 2 ) = ( 1r ‘ 𝐹 ) ↔ ( ( 1r ‘ 𝐹 ) = 0 ∨ ( 1r ‘ 𝐹 ) = 1 ) ) ) |
69 |
52 68
|
syl |
⊢ ( 𝜑 → ( ( ( 1r ‘ 𝐹 ) ↑ 2 ) = ( 1r ‘ 𝐹 ) ↔ ( ( 1r ‘ 𝐹 ) = 0 ∨ ( 1r ‘ 𝐹 ) = 1 ) ) ) |
70 |
67 69
|
mpbid |
⊢ ( 𝜑 → ( ( 1r ‘ 𝐹 ) = 0 ∨ ( 1r ‘ 𝐹 ) = 1 ) ) |
71 |
70
|
ord |
⊢ ( 𝜑 → ( ¬ ( 1r ‘ 𝐹 ) = 0 → ( 1r ‘ 𝐹 ) = 1 ) ) |
72 |
49 71
|
mpd |
⊢ ( 𝜑 → ( 1r ‘ 𝐹 ) = 1 ) |
73 |
72 51
|
eqeltrrd |
⊢ ( 𝜑 → 1 ∈ 𝐾 ) |
74 |
31 73
|
jca |
⊢ ( 𝜑 → ( 𝐾 ⊆ ℂ ∧ 1 ∈ 𝐾 ) ) |
75 |
|
cnfld1 |
⊢ 1 = ( 1r ‘ ℂfld ) |
76 |
16 75
|
issubrg |
⊢ ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ↔ ( ( ℂfld ∈ Ring ∧ ( ℂfld ↾s 𝐾 ) ∈ Ring ) ∧ ( 𝐾 ⊆ ℂ ∧ 1 ∈ 𝐾 ) ) ) |
77 |
28 74 76
|
sylanbrc |
⊢ ( 𝜑 → 𝐾 ∈ ( SubRing ‘ ℂfld ) ) |
78 |
25 20 77
|
3jca |
⊢ ( 𝜑 → ( 𝐹 = ( ℂfld ↾s 𝐾 ) ∧ 𝐾 = ( 𝐴 ∩ ℂ ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) ) |