Metamath Proof Explorer


Theorem cphsubrglem

Description: Lemma for cphsubrg . (Contributed by Mario Carneiro, 9-Oct-2015)

Ref Expression
Hypotheses cphsubrglem.k 𝐾 = ( Base ‘ 𝐹 )
cphsubrglem.1 ( 𝜑𝐹 = ( ℂflds 𝐴 ) )
cphsubrglem.2 ( 𝜑𝐹 ∈ DivRing )
Assertion cphsubrglem ( 𝜑 → ( 𝐹 = ( ℂflds 𝐾 ) ∧ 𝐾 = ( 𝐴 ∩ ℂ ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) )

Proof

Step Hyp Ref Expression
1 cphsubrglem.k 𝐾 = ( Base ‘ 𝐹 )
2 cphsubrglem.1 ( 𝜑𝐹 = ( ℂflds 𝐴 ) )
3 cphsubrglem.2 ( 𝜑𝐹 ∈ DivRing )
4 2 fveq2d ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( ℂflds 𝐴 ) ) )
5 drngring ( 𝐹 ∈ DivRing → 𝐹 ∈ Ring )
6 3 5 syl ( 𝜑𝐹 ∈ Ring )
7 2 6 eqeltrrd ( 𝜑 → ( ℂflds 𝐴 ) ∈ Ring )
8 eqid ( Base ‘ ( ℂflds 𝐴 ) ) = ( Base ‘ ( ℂflds 𝐴 ) )
9 eqid ( 0g ‘ ( ℂflds 𝐴 ) ) = ( 0g ‘ ( ℂflds 𝐴 ) )
10 8 9 ring0cl ( ( ℂflds 𝐴 ) ∈ Ring → ( 0g ‘ ( ℂflds 𝐴 ) ) ∈ ( Base ‘ ( ℂflds 𝐴 ) ) )
11 reldmress Rel dom ↾s
12 eqid ( ℂflds 𝐴 ) = ( ℂflds 𝐴 )
13 11 12 8 elbasov ( ( 0g ‘ ( ℂflds 𝐴 ) ) ∈ ( Base ‘ ( ℂflds 𝐴 ) ) → ( ℂfld ∈ V ∧ 𝐴 ∈ V ) )
14 7 10 13 3syl ( 𝜑 → ( ℂfld ∈ V ∧ 𝐴 ∈ V ) )
15 14 simprd ( 𝜑𝐴 ∈ V )
16 cnfldbas ℂ = ( Base ‘ ℂfld )
17 12 16 ressbas ( 𝐴 ∈ V → ( 𝐴 ∩ ℂ ) = ( Base ‘ ( ℂflds 𝐴 ) ) )
18 15 17 syl ( 𝜑 → ( 𝐴 ∩ ℂ ) = ( Base ‘ ( ℂflds 𝐴 ) ) )
19 4 18 eqtr4d ( 𝜑 → ( Base ‘ 𝐹 ) = ( 𝐴 ∩ ℂ ) )
20 1 19 eqtrid ( 𝜑𝐾 = ( 𝐴 ∩ ℂ ) )
21 20 oveq2d ( 𝜑 → ( ℂflds 𝐾 ) = ( ℂflds ( 𝐴 ∩ ℂ ) ) )
22 16 ressinbas ( 𝐴 ∈ V → ( ℂflds 𝐴 ) = ( ℂflds ( 𝐴 ∩ ℂ ) ) )
23 15 22 syl ( 𝜑 → ( ℂflds 𝐴 ) = ( ℂflds ( 𝐴 ∩ ℂ ) ) )
24 21 23 eqtr4d ( 𝜑 → ( ℂflds 𝐾 ) = ( ℂflds 𝐴 ) )
25 2 24 eqtr4d ( 𝜑𝐹 = ( ℂflds 𝐾 ) )
26 25 6 eqeltrrd ( 𝜑 → ( ℂflds 𝐾 ) ∈ Ring )
27 cnring fld ∈ Ring
28 26 27 jctil ( 𝜑 → ( ℂfld ∈ Ring ∧ ( ℂflds 𝐾 ) ∈ Ring ) )
29 12 16 ressbasss ( Base ‘ ( ℂflds 𝐴 ) ) ⊆ ℂ
30 4 29 eqsstrdi ( 𝜑 → ( Base ‘ 𝐹 ) ⊆ ℂ )
31 1 30 eqsstrid ( 𝜑𝐾 ⊆ ℂ )
32 eqid ( 0g𝐹 ) = ( 0g𝐹 )
33 eqid ( 1r𝐹 ) = ( 1r𝐹 )
34 32 33 drngunz ( 𝐹 ∈ DivRing → ( 1r𝐹 ) ≠ ( 0g𝐹 ) )
35 3 34 syl ( 𝜑 → ( 1r𝐹 ) ≠ ( 0g𝐹 ) )
36 25 fveq2d ( 𝜑 → ( 0g𝐹 ) = ( 0g ‘ ( ℂflds 𝐾 ) ) )
37 ringgrp ( ℂfld ∈ Ring → ℂfld ∈ Grp )
38 27 37 mp1i ( 𝜑 → ℂfld ∈ Grp )
39 ringgrp ( ( ℂflds 𝐾 ) ∈ Ring → ( ℂflds 𝐾 ) ∈ Grp )
40 26 39 syl ( 𝜑 → ( ℂflds 𝐾 ) ∈ Grp )
41 16 issubg ( 𝐾 ∈ ( SubGrp ‘ ℂfld ) ↔ ( ℂfld ∈ Grp ∧ 𝐾 ⊆ ℂ ∧ ( ℂflds 𝐾 ) ∈ Grp ) )
42 38 31 40 41 syl3anbrc ( 𝜑𝐾 ∈ ( SubGrp ‘ ℂfld ) )
43 eqid ( ℂflds 𝐾 ) = ( ℂflds 𝐾 )
44 cnfld0 0 = ( 0g ‘ ℂfld )
45 43 44 subg0 ( 𝐾 ∈ ( SubGrp ‘ ℂfld ) → 0 = ( 0g ‘ ( ℂflds 𝐾 ) ) )
46 42 45 syl ( 𝜑 → 0 = ( 0g ‘ ( ℂflds 𝐾 ) ) )
47 36 46 eqtr4d ( 𝜑 → ( 0g𝐹 ) = 0 )
48 35 47 neeqtrd ( 𝜑 → ( 1r𝐹 ) ≠ 0 )
49 48 neneqd ( 𝜑 → ¬ ( 1r𝐹 ) = 0 )
50 1 33 ringidcl ( 𝐹 ∈ Ring → ( 1r𝐹 ) ∈ 𝐾 )
51 6 50 syl ( 𝜑 → ( 1r𝐹 ) ∈ 𝐾 )
52 31 51 sseldd ( 𝜑 → ( 1r𝐹 ) ∈ ℂ )
53 52 sqvald ( 𝜑 → ( ( 1r𝐹 ) ↑ 2 ) = ( ( 1r𝐹 ) · ( 1r𝐹 ) ) )
54 25 fveq2d ( 𝜑 → ( 1r𝐹 ) = ( 1r ‘ ( ℂflds 𝐾 ) ) )
55 54 oveq1d ( 𝜑 → ( ( 1r𝐹 ) · ( 1r𝐹 ) ) = ( ( 1r ‘ ( ℂflds 𝐾 ) ) · ( 1r𝐹 ) ) )
56 25 fveq2d ( 𝜑 → ( Base ‘ 𝐹 ) = ( Base ‘ ( ℂflds 𝐾 ) ) )
57 1 56 eqtrid ( 𝜑𝐾 = ( Base ‘ ( ℂflds 𝐾 ) ) )
58 51 57 eleqtrd ( 𝜑 → ( 1r𝐹 ) ∈ ( Base ‘ ( ℂflds 𝐾 ) ) )
59 eqid ( Base ‘ ( ℂflds 𝐾 ) ) = ( Base ‘ ( ℂflds 𝐾 ) )
60 1 fvexi 𝐾 ∈ V
61 cnfldmul · = ( .r ‘ ℂfld )
62 43 61 ressmulr ( 𝐾 ∈ V → · = ( .r ‘ ( ℂflds 𝐾 ) ) )
63 60 62 ax-mp · = ( .r ‘ ( ℂflds 𝐾 ) )
64 eqid ( 1r ‘ ( ℂflds 𝐾 ) ) = ( 1r ‘ ( ℂflds 𝐾 ) )
65 59 63 64 ringlidm ( ( ( ℂflds 𝐾 ) ∈ Ring ∧ ( 1r𝐹 ) ∈ ( Base ‘ ( ℂflds 𝐾 ) ) ) → ( ( 1r ‘ ( ℂflds 𝐾 ) ) · ( 1r𝐹 ) ) = ( 1r𝐹 ) )
66 26 58 65 syl2anc ( 𝜑 → ( ( 1r ‘ ( ℂflds 𝐾 ) ) · ( 1r𝐹 ) ) = ( 1r𝐹 ) )
67 53 55 66 3eqtrd ( 𝜑 → ( ( 1r𝐹 ) ↑ 2 ) = ( 1r𝐹 ) )
68 sq01 ( ( 1r𝐹 ) ∈ ℂ → ( ( ( 1r𝐹 ) ↑ 2 ) = ( 1r𝐹 ) ↔ ( ( 1r𝐹 ) = 0 ∨ ( 1r𝐹 ) = 1 ) ) )
69 52 68 syl ( 𝜑 → ( ( ( 1r𝐹 ) ↑ 2 ) = ( 1r𝐹 ) ↔ ( ( 1r𝐹 ) = 0 ∨ ( 1r𝐹 ) = 1 ) ) )
70 67 69 mpbid ( 𝜑 → ( ( 1r𝐹 ) = 0 ∨ ( 1r𝐹 ) = 1 ) )
71 70 ord ( 𝜑 → ( ¬ ( 1r𝐹 ) = 0 → ( 1r𝐹 ) = 1 ) )
72 49 71 mpd ( 𝜑 → ( 1r𝐹 ) = 1 )
73 72 51 eqeltrrd ( 𝜑 → 1 ∈ 𝐾 )
74 31 73 jca ( 𝜑 → ( 𝐾 ⊆ ℂ ∧ 1 ∈ 𝐾 ) )
75 cnfld1 1 = ( 1r ‘ ℂfld )
76 16 75 issubrg ( 𝐾 ∈ ( SubRing ‘ ℂfld ) ↔ ( ( ℂfld ∈ Ring ∧ ( ℂflds 𝐾 ) ∈ Ring ) ∧ ( 𝐾 ⊆ ℂ ∧ 1 ∈ 𝐾 ) ) )
77 28 74 76 sylanbrc ( 𝜑𝐾 ∈ ( SubRing ‘ ℂfld ) )
78 25 20 77 3jca ( 𝜑 → ( 𝐹 = ( ℂflds 𝐾 ) ∧ 𝐾 = ( 𝐴 ∩ ℂ ) ∧ 𝐾 ∈ ( SubRing ‘ ℂfld ) ) )