Metamath Proof Explorer


Theorem cphtcphnm

Description: The norm of a norm-augmented subcomplex pre-Hilbert space is the same as the original norm on it. (Contributed by Mario Carneiro, 11-Oct-2015)

Ref Expression
Hypotheses tcphval.n 𝐺 = ( toℂPreHil ‘ 𝑊 )
cphtcphnm.n 𝑁 = ( norm ‘ 𝑊 )
Assertion cphtcphnm ( 𝑊 ∈ ℂPreHil → 𝑁 = ( norm ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 tcphval.n 𝐺 = ( toℂPreHil ‘ 𝑊 )
2 cphtcphnm.n 𝑁 = ( norm ‘ 𝑊 )
3 eqid ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 )
4 eqid ( ·𝑖𝑊 ) = ( ·𝑖𝑊 )
5 3 4 2 cphnmfval ( 𝑊 ∈ ℂPreHil → 𝑁 = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) ) ) )
6 cphlmod ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod )
7 lmodgrp ( 𝑊 ∈ LMod → 𝑊 ∈ Grp )
8 eqid ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 )
9 1 8 3 4 tchnmfval ( 𝑊 ∈ Grp → ( norm ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) ) ) )
10 6 7 9 3syl ( 𝑊 ∈ ℂPreHil → ( norm ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖𝑊 ) 𝑥 ) ) ) )
11 5 10 eqtr4d ( 𝑊 ∈ ℂPreHil → 𝑁 = ( norm ‘ 𝐺 ) )