Step |
Hyp |
Ref |
Expression |
1 |
|
tcphval.n |
⊢ 𝐺 = ( toℂPreHil ‘ 𝑊 ) |
2 |
|
cphtcphnm.n |
⊢ 𝑁 = ( norm ‘ 𝑊 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) |
4 |
|
eqid |
⊢ ( ·𝑖 ‘ 𝑊 ) = ( ·𝑖 ‘ 𝑊 ) |
5 |
3 4 2
|
cphnmfval |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑁 = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) |
6 |
|
cphlmod |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑊 ∈ LMod ) |
7 |
|
lmodgrp |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ Grp ) |
8 |
|
eqid |
⊢ ( norm ‘ 𝐺 ) = ( norm ‘ 𝐺 ) |
9 |
1 8 3 4
|
tchnmfval |
⊢ ( 𝑊 ∈ Grp → ( norm ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) |
10 |
6 7 9
|
3syl |
⊢ ( 𝑊 ∈ ℂPreHil → ( norm ‘ 𝐺 ) = ( 𝑥 ∈ ( Base ‘ 𝑊 ) ↦ ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) |
11 |
5 10
|
eqtr4d |
⊢ ( 𝑊 ∈ ℂPreHil → 𝑁 = ( norm ‘ 𝐺 ) ) |