| Step | Hyp | Ref | Expression | 
						
							| 1 |  | tcphval.n | ⊢ 𝐺  =  ( toℂPreHil ‘ 𝑊 ) | 
						
							| 2 |  | cphtcphnm.n | ⊢ 𝑁  =  ( norm ‘ 𝑊 ) | 
						
							| 3 |  | eqid | ⊢ ( Base ‘ 𝑊 )  =  ( Base ‘ 𝑊 ) | 
						
							| 4 |  | eqid | ⊢ ( ·𝑖 ‘ 𝑊 )  =  ( ·𝑖 ‘ 𝑊 ) | 
						
							| 5 | 3 4 2 | cphnmfval | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑁  =  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) | 
						
							| 6 |  | cphlmod | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑊  ∈  LMod ) | 
						
							| 7 |  | lmodgrp | ⊢ ( 𝑊  ∈  LMod  →  𝑊  ∈  Grp ) | 
						
							| 8 |  | eqid | ⊢ ( norm ‘ 𝐺 )  =  ( norm ‘ 𝐺 ) | 
						
							| 9 | 1 8 3 4 | tchnmfval | ⊢ ( 𝑊  ∈  Grp  →  ( norm ‘ 𝐺 )  =  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) | 
						
							| 10 | 6 7 9 | 3syl | ⊢ ( 𝑊  ∈  ℂPreHil  →  ( norm ‘ 𝐺 )  =  ( 𝑥  ∈  ( Base ‘ 𝑊 )  ↦  ( √ ‘ ( 𝑥 ( ·𝑖 ‘ 𝑊 ) 𝑥 ) ) ) ) | 
						
							| 11 | 5 10 | eqtr4d | ⊢ ( 𝑊  ∈  ℂPreHil  →  𝑁  =  ( norm ‘ 𝐺 ) ) |