| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cplem1.1 | 
							⊢ 𝐶  =  { 𝑦  ∈  𝐵  ∣  ∀ 𝑧  ∈  𝐵 ( rank ‘ 𝑦 )  ⊆  ( rank ‘ 𝑧 ) }  | 
						
						
							| 2 | 
							
								
							 | 
							cplem1.2 | 
							⊢ 𝐷  =  ∪  𝑥  ∈  𝐴 𝐶  | 
						
						
							| 3 | 
							
								
							 | 
							scott0 | 
							⊢ ( 𝐵  =  ∅  ↔  { 𝑦  ∈  𝐵  ∣  ∀ 𝑧  ∈  𝐵 ( rank ‘ 𝑦 )  ⊆  ( rank ‘ 𝑧 ) }  =  ∅ )  | 
						
						
							| 4 | 
							
								1
							 | 
							eqeq1i | 
							⊢ ( 𝐶  =  ∅  ↔  { 𝑦  ∈  𝐵  ∣  ∀ 𝑧  ∈  𝐵 ( rank ‘ 𝑦 )  ⊆  ( rank ‘ 𝑧 ) }  =  ∅ )  | 
						
						
							| 5 | 
							
								3 4
							 | 
							bitr4i | 
							⊢ ( 𝐵  =  ∅  ↔  𝐶  =  ∅ )  | 
						
						
							| 6 | 
							
								5
							 | 
							necon3bii | 
							⊢ ( 𝐵  ≠  ∅  ↔  𝐶  ≠  ∅ )  | 
						
						
							| 7 | 
							
								
							 | 
							n0 | 
							⊢ ( 𝐶  ≠  ∅  ↔  ∃ 𝑤 𝑤  ∈  𝐶 )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							bitri | 
							⊢ ( 𝐵  ≠  ∅  ↔  ∃ 𝑤 𝑤  ∈  𝐶 )  | 
						
						
							| 9 | 
							
								1
							 | 
							ssrab3 | 
							⊢ 𝐶  ⊆  𝐵  | 
						
						
							| 10 | 
							
								9
							 | 
							sseli | 
							⊢ ( 𝑤  ∈  𝐶  →  𝑤  ∈  𝐵 )  | 
						
						
							| 11 | 
							
								10
							 | 
							a1i | 
							⊢ ( 𝑥  ∈  𝐴  →  ( 𝑤  ∈  𝐶  →  𝑤  ∈  𝐵 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							ssiun2 | 
							⊢ ( 𝑥  ∈  𝐴  →  𝐶  ⊆  ∪  𝑥  ∈  𝐴 𝐶 )  | 
						
						
							| 13 | 
							
								12 2
							 | 
							sseqtrrdi | 
							⊢ ( 𝑥  ∈  𝐴  →  𝐶  ⊆  𝐷 )  | 
						
						
							| 14 | 
							
								13
							 | 
							sseld | 
							⊢ ( 𝑥  ∈  𝐴  →  ( 𝑤  ∈  𝐶  →  𝑤  ∈  𝐷 ) )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							jcad | 
							⊢ ( 𝑥  ∈  𝐴  →  ( 𝑤  ∈  𝐶  →  ( 𝑤  ∈  𝐵  ∧  𝑤  ∈  𝐷 ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							inelcm | 
							⊢ ( ( 𝑤  ∈  𝐵  ∧  𝑤  ∈  𝐷 )  →  ( 𝐵  ∩  𝐷 )  ≠  ∅ )  | 
						
						
							| 17 | 
							
								15 16
							 | 
							syl6 | 
							⊢ ( 𝑥  ∈  𝐴  →  ( 𝑤  ∈  𝐶  →  ( 𝐵  ∩  𝐷 )  ≠  ∅ ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							exlimdv | 
							⊢ ( 𝑥  ∈  𝐴  →  ( ∃ 𝑤 𝑤  ∈  𝐶  →  ( 𝐵  ∩  𝐷 )  ≠  ∅ ) )  | 
						
						
							| 19 | 
							
								8 18
							 | 
							biimtrid | 
							⊢ ( 𝑥  ∈  𝐴  →  ( 𝐵  ≠  ∅  →  ( 𝐵  ∩  𝐷 )  ≠  ∅ ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							rgen | 
							⊢ ∀ 𝑥  ∈  𝐴 ( 𝐵  ≠  ∅  →  ( 𝐵  ∩  𝐷 )  ≠  ∅ )  |