| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cplem1.1 |
⊢ 𝐶 = { 𝑦 ∈ 𝐵 ∣ ∀ 𝑧 ∈ 𝐵 ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑧 ) } |
| 2 |
|
cplem1.2 |
⊢ 𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 |
| 3 |
|
scott0 |
⊢ ( 𝐵 = ∅ ↔ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑧 ∈ 𝐵 ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑧 ) } = ∅ ) |
| 4 |
1
|
eqeq1i |
⊢ ( 𝐶 = ∅ ↔ { 𝑦 ∈ 𝐵 ∣ ∀ 𝑧 ∈ 𝐵 ( rank ‘ 𝑦 ) ⊆ ( rank ‘ 𝑧 ) } = ∅ ) |
| 5 |
3 4
|
bitr4i |
⊢ ( 𝐵 = ∅ ↔ 𝐶 = ∅ ) |
| 6 |
5
|
necon3bii |
⊢ ( 𝐵 ≠ ∅ ↔ 𝐶 ≠ ∅ ) |
| 7 |
|
n0 |
⊢ ( 𝐶 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝐶 ) |
| 8 |
6 7
|
bitri |
⊢ ( 𝐵 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝐶 ) |
| 9 |
1
|
ssrab3 |
⊢ 𝐶 ⊆ 𝐵 |
| 10 |
9
|
sseli |
⊢ ( 𝑤 ∈ 𝐶 → 𝑤 ∈ 𝐵 ) |
| 11 |
10
|
a1i |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝐶 → 𝑤 ∈ 𝐵 ) ) |
| 12 |
|
ssiun2 |
⊢ ( 𝑥 ∈ 𝐴 → 𝐶 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ) |
| 13 |
12 2
|
sseqtrrdi |
⊢ ( 𝑥 ∈ 𝐴 → 𝐶 ⊆ 𝐷 ) |
| 14 |
13
|
sseld |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝐶 → 𝑤 ∈ 𝐷 ) ) |
| 15 |
11 14
|
jcad |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝐶 → ( 𝑤 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷 ) ) ) |
| 16 |
|
inelcm |
⊢ ( ( 𝑤 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷 ) → ( 𝐵 ∩ 𝐷 ) ≠ ∅ ) |
| 17 |
15 16
|
syl6 |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝑤 ∈ 𝐶 → ( 𝐵 ∩ 𝐷 ) ≠ ∅ ) ) |
| 18 |
17
|
exlimdv |
⊢ ( 𝑥 ∈ 𝐴 → ( ∃ 𝑤 𝑤 ∈ 𝐶 → ( 𝐵 ∩ 𝐷 ) ≠ ∅ ) ) |
| 19 |
8 18
|
biimtrid |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝐵 ≠ ∅ → ( 𝐵 ∩ 𝐷 ) ≠ ∅ ) ) |
| 20 |
19
|
rgen |
⊢ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ≠ ∅ → ( 𝐵 ∩ 𝐷 ) ≠ ∅ ) |