| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cplem2.1 | 
							⊢ 𝐴  ∈  V  | 
						
						
							| 2 | 
							
								
							 | 
							scottex | 
							⊢ { 𝑧  ∈  𝐵  ∣  ∀ 𝑤  ∈  𝐵 ( rank ‘ 𝑧 )  ⊆  ( rank ‘ 𝑤 ) }  ∈  V  | 
						
						
							| 3 | 
							
								1 2
							 | 
							iunex | 
							⊢ ∪  𝑥  ∈  𝐴 { 𝑧  ∈  𝐵  ∣  ∀ 𝑤  ∈  𝐵 ( rank ‘ 𝑧 )  ⊆  ( rank ‘ 𝑤 ) }  ∈  V  | 
						
						
							| 4 | 
							
								
							 | 
							nfiu1 | 
							⊢ Ⅎ 𝑥 ∪  𝑥  ∈  𝐴 { 𝑧  ∈  𝐵  ∣  ∀ 𝑤  ∈  𝐵 ( rank ‘ 𝑧 )  ⊆  ( rank ‘ 𝑤 ) }  | 
						
						
							| 5 | 
							
								4
							 | 
							nfeq2 | 
							⊢ Ⅎ 𝑥 𝑦  =  ∪  𝑥  ∈  𝐴 { 𝑧  ∈  𝐵  ∣  ∀ 𝑤  ∈  𝐵 ( rank ‘ 𝑧 )  ⊆  ( rank ‘ 𝑤 ) }  | 
						
						
							| 6 | 
							
								
							 | 
							ineq2 | 
							⊢ ( 𝑦  =  ∪  𝑥  ∈  𝐴 { 𝑧  ∈  𝐵  ∣  ∀ 𝑤  ∈  𝐵 ( rank ‘ 𝑧 )  ⊆  ( rank ‘ 𝑤 ) }  →  ( 𝐵  ∩  𝑦 )  =  ( 𝐵  ∩  ∪  𝑥  ∈  𝐴 { 𝑧  ∈  𝐵  ∣  ∀ 𝑤  ∈  𝐵 ( rank ‘ 𝑧 )  ⊆  ( rank ‘ 𝑤 ) } ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							neeq1d | 
							⊢ ( 𝑦  =  ∪  𝑥  ∈  𝐴 { 𝑧  ∈  𝐵  ∣  ∀ 𝑤  ∈  𝐵 ( rank ‘ 𝑧 )  ⊆  ( rank ‘ 𝑤 ) }  →  ( ( 𝐵  ∩  𝑦 )  ≠  ∅  ↔  ( 𝐵  ∩  ∪  𝑥  ∈  𝐴 { 𝑧  ∈  𝐵  ∣  ∀ 𝑤  ∈  𝐵 ( rank ‘ 𝑧 )  ⊆  ( rank ‘ 𝑤 ) } )  ≠  ∅ ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							imbi2d | 
							⊢ ( 𝑦  =  ∪  𝑥  ∈  𝐴 { 𝑧  ∈  𝐵  ∣  ∀ 𝑤  ∈  𝐵 ( rank ‘ 𝑧 )  ⊆  ( rank ‘ 𝑤 ) }  →  ( ( 𝐵  ≠  ∅  →  ( 𝐵  ∩  𝑦 )  ≠  ∅ )  ↔  ( 𝐵  ≠  ∅  →  ( 𝐵  ∩  ∪  𝑥  ∈  𝐴 { 𝑧  ∈  𝐵  ∣  ∀ 𝑤  ∈  𝐵 ( rank ‘ 𝑧 )  ⊆  ( rank ‘ 𝑤 ) } )  ≠  ∅ ) ) )  | 
						
						
							| 9 | 
							
								5 8
							 | 
							ralbid | 
							⊢ ( 𝑦  =  ∪  𝑥  ∈  𝐴 { 𝑧  ∈  𝐵  ∣  ∀ 𝑤  ∈  𝐵 ( rank ‘ 𝑧 )  ⊆  ( rank ‘ 𝑤 ) }  →  ( ∀ 𝑥  ∈  𝐴 ( 𝐵  ≠  ∅  →  ( 𝐵  ∩  𝑦 )  ≠  ∅ )  ↔  ∀ 𝑥  ∈  𝐴 ( 𝐵  ≠  ∅  →  ( 𝐵  ∩  ∪  𝑥  ∈  𝐴 { 𝑧  ∈  𝐵  ∣  ∀ 𝑤  ∈  𝐵 ( rank ‘ 𝑧 )  ⊆  ( rank ‘ 𝑤 ) } )  ≠  ∅ ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							⊢ { 𝑧  ∈  𝐵  ∣  ∀ 𝑤  ∈  𝐵 ( rank ‘ 𝑧 )  ⊆  ( rank ‘ 𝑤 ) }  =  { 𝑧  ∈  𝐵  ∣  ∀ 𝑤  ∈  𝐵 ( rank ‘ 𝑧 )  ⊆  ( rank ‘ 𝑤 ) }  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							⊢ ∪  𝑥  ∈  𝐴 { 𝑧  ∈  𝐵  ∣  ∀ 𝑤  ∈  𝐵 ( rank ‘ 𝑧 )  ⊆  ( rank ‘ 𝑤 ) }  =  ∪  𝑥  ∈  𝐴 { 𝑧  ∈  𝐵  ∣  ∀ 𝑤  ∈  𝐵 ( rank ‘ 𝑧 )  ⊆  ( rank ‘ 𝑤 ) }  | 
						
						
							| 12 | 
							
								10 11
							 | 
							cplem1 | 
							⊢ ∀ 𝑥  ∈  𝐴 ( 𝐵  ≠  ∅  →  ( 𝐵  ∩  ∪  𝑥  ∈  𝐴 { 𝑧  ∈  𝐵  ∣  ∀ 𝑤  ∈  𝐵 ( rank ‘ 𝑧 )  ⊆  ( rank ‘ 𝑤 ) } )  ≠  ∅ )  | 
						
						
							| 13 | 
							
								3 9 12
							 | 
							ceqsexv2d | 
							⊢ ∃ 𝑦 ∀ 𝑥  ∈  𝐴 ( 𝐵  ≠  ∅  →  ( 𝐵  ∩  𝑦 )  ≠  ∅ )  |