Step |
Hyp |
Ref |
Expression |
1 |
|
cplem2.1 |
⊢ 𝐴 ∈ V |
2 |
|
scottex |
⊢ { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } ∈ V |
3 |
1 2
|
iunex |
⊢ ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } ∈ V |
4 |
|
nfiu1 |
⊢ Ⅎ 𝑥 ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } |
5 |
4
|
nfeq2 |
⊢ Ⅎ 𝑥 𝑦 = ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } |
6 |
|
ineq2 |
⊢ ( 𝑦 = ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } → ( 𝐵 ∩ 𝑦 ) = ( 𝐵 ∩ ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } ) ) |
7 |
6
|
neeq1d |
⊢ ( 𝑦 = ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } → ( ( 𝐵 ∩ 𝑦 ) ≠ ∅ ↔ ( 𝐵 ∩ ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } ) ≠ ∅ ) ) |
8 |
7
|
imbi2d |
⊢ ( 𝑦 = ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } → ( ( 𝐵 ≠ ∅ → ( 𝐵 ∩ 𝑦 ) ≠ ∅ ) ↔ ( 𝐵 ≠ ∅ → ( 𝐵 ∩ ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } ) ≠ ∅ ) ) ) |
9 |
5 8
|
ralbid |
⊢ ( 𝑦 = ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } → ( ∀ 𝑥 ∈ 𝐴 ( 𝐵 ≠ ∅ → ( 𝐵 ∩ 𝑦 ) ≠ ∅ ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ≠ ∅ → ( 𝐵 ∩ ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } ) ≠ ∅ ) ) ) |
10 |
|
eqid |
⊢ { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } = { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } |
11 |
|
eqid |
⊢ ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } = ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } |
12 |
10 11
|
cplem1 |
⊢ ∀ 𝑥 ∈ 𝐴 ( 𝐵 ≠ ∅ → ( 𝐵 ∩ ∪ 𝑥 ∈ 𝐴 { 𝑧 ∈ 𝐵 ∣ ∀ 𝑤 ∈ 𝐵 ( rank ‘ 𝑧 ) ⊆ ( rank ‘ 𝑤 ) } ) ≠ ∅ ) |
13 |
3 9 12
|
ceqsexv2d |
⊢ ∃ 𝑦 ∀ 𝑥 ∈ 𝐴 ( 𝐵 ≠ ∅ → ( 𝐵 ∩ 𝑦 ) ≠ ∅ ) |