| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cplgr0v.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 2 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ♯ ‘ 𝑉 )  =  1  ∧  𝑣  ∈  𝑉 )  →  𝑣  ∈  𝑉 )  | 
						
						
							| 3 | 
							
								
							 | 
							ral0 | 
							⊢ ∀ 𝑛  ∈  ∅ 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 )  | 
						
						
							| 4 | 
							
								1
							 | 
							fvexi | 
							⊢ 𝑉  ∈  V  | 
						
						
							| 5 | 
							
								
							 | 
							hash1snb | 
							⊢ ( 𝑉  ∈  V  →  ( ( ♯ ‘ 𝑉 )  =  1  ↔  ∃ 𝑛 𝑉  =  { 𝑛 } ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							ax-mp | 
							⊢ ( ( ♯ ‘ 𝑉 )  =  1  ↔  ∃ 𝑛 𝑉  =  { 𝑛 } )  | 
						
						
							| 7 | 
							
								
							 | 
							velsn | 
							⊢ ( 𝑣  ∈  { 𝑛 }  ↔  𝑣  =  𝑛 )  | 
						
						
							| 8 | 
							
								
							 | 
							sneq | 
							⊢ ( 𝑣  =  𝑛  →  { 𝑣 }  =  { 𝑛 } )  | 
						
						
							| 9 | 
							
								8
							 | 
							difeq2d | 
							⊢ ( 𝑣  =  𝑛  →  ( { 𝑛 }  ∖  { 𝑣 } )  =  ( { 𝑛 }  ∖  { 𝑛 } ) )  | 
						
						
							| 10 | 
							
								
							 | 
							difid | 
							⊢ ( { 𝑛 }  ∖  { 𝑛 } )  =  ∅  | 
						
						
							| 11 | 
							
								9 10
							 | 
							eqtrdi | 
							⊢ ( 𝑣  =  𝑛  →  ( { 𝑛 }  ∖  { 𝑣 } )  =  ∅ )  | 
						
						
							| 12 | 
							
								7 11
							 | 
							sylbi | 
							⊢ ( 𝑣  ∈  { 𝑛 }  →  ( { 𝑛 }  ∖  { 𝑣 } )  =  ∅ )  | 
						
						
							| 13 | 
							
								12
							 | 
							a1i | 
							⊢ ( 𝑉  =  { 𝑛 }  →  ( 𝑣  ∈  { 𝑛 }  →  ( { 𝑛 }  ∖  { 𝑣 } )  =  ∅ ) )  | 
						
						
							| 14 | 
							
								
							 | 
							eleq2 | 
							⊢ ( 𝑉  =  { 𝑛 }  →  ( 𝑣  ∈  𝑉  ↔  𝑣  ∈  { 𝑛 } ) )  | 
						
						
							| 15 | 
							
								
							 | 
							difeq1 | 
							⊢ ( 𝑉  =  { 𝑛 }  →  ( 𝑉  ∖  { 𝑣 } )  =  ( { 𝑛 }  ∖  { 𝑣 } ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							eqeq1d | 
							⊢ ( 𝑉  =  { 𝑛 }  →  ( ( 𝑉  ∖  { 𝑣 } )  =  ∅  ↔  ( { 𝑛 }  ∖  { 𝑣 } )  =  ∅ ) )  | 
						
						
							| 17 | 
							
								13 14 16
							 | 
							3imtr4d | 
							⊢ ( 𝑉  =  { 𝑛 }  →  ( 𝑣  ∈  𝑉  →  ( 𝑉  ∖  { 𝑣 } )  =  ∅ ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							exlimiv | 
							⊢ ( ∃ 𝑛 𝑉  =  { 𝑛 }  →  ( 𝑣  ∈  𝑉  →  ( 𝑉  ∖  { 𝑣 } )  =  ∅ ) )  | 
						
						
							| 19 | 
							
								6 18
							 | 
							sylbi | 
							⊢ ( ( ♯ ‘ 𝑉 )  =  1  →  ( 𝑣  ∈  𝑉  →  ( 𝑉  ∖  { 𝑣 } )  =  ∅ ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							imp | 
							⊢ ( ( ( ♯ ‘ 𝑉 )  =  1  ∧  𝑣  ∈  𝑉 )  →  ( 𝑉  ∖  { 𝑣 } )  =  ∅ )  | 
						
						
							| 21 | 
							
								20
							 | 
							raleqdv | 
							⊢ ( ( ( ♯ ‘ 𝑉 )  =  1  ∧  𝑣  ∈  𝑉 )  →  ( ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 )  ↔  ∀ 𝑛  ∈  ∅ 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 ) ) )  | 
						
						
							| 22 | 
							
								3 21
							 | 
							mpbiri | 
							⊢ ( ( ( ♯ ‘ 𝑉 )  =  1  ∧  𝑣  ∈  𝑉 )  →  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 ) )  | 
						
						
							| 23 | 
							
								1
							 | 
							uvtxel | 
							⊢ ( 𝑣  ∈  ( UnivVtx ‘ 𝐺 )  ↔  ( 𝑣  ∈  𝑉  ∧  ∀ 𝑛  ∈  ( 𝑉  ∖  { 𝑣 } ) 𝑛  ∈  ( 𝐺  NeighbVtx  𝑣 ) ) )  | 
						
						
							| 24 | 
							
								2 22 23
							 | 
							sylanbrc | 
							⊢ ( ( ( ♯ ‘ 𝑉 )  =  1  ∧  𝑣  ∈  𝑉 )  →  𝑣  ∈  ( UnivVtx ‘ 𝐺 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							ralrimiva | 
							⊢ ( ( ♯ ‘ 𝑉 )  =  1  →  ∀ 𝑣  ∈  𝑉 𝑣  ∈  ( UnivVtx ‘ 𝐺 ) )  | 
						
						
							| 26 | 
							
								1
							 | 
							cplgr1vlem | 
							⊢ ( ( ♯ ‘ 𝑉 )  =  1  →  𝐺  ∈  V )  | 
						
						
							| 27 | 
							
								1
							 | 
							iscplgr | 
							⊢ ( 𝐺  ∈  V  →  ( 𝐺  ∈  ComplGraph  ↔  ∀ 𝑣  ∈  𝑉 𝑣  ∈  ( UnivVtx ‘ 𝐺 ) ) )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							syl | 
							⊢ ( ( ♯ ‘ 𝑉 )  =  1  →  ( 𝐺  ∈  ComplGraph  ↔  ∀ 𝑣  ∈  𝑉 𝑣  ∈  ( UnivVtx ‘ 𝐺 ) ) )  | 
						
						
							| 29 | 
							
								25 28
							 | 
							mpbird | 
							⊢ ( ( ♯ ‘ 𝑉 )  =  1  →  𝐺  ∈  ComplGraph )  |