Step |
Hyp |
Ref |
Expression |
1 |
|
cplgr0v.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
simpr |
⊢ ( ( ( ♯ ‘ 𝑉 ) = 1 ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ 𝑉 ) |
3 |
|
ral0 |
⊢ ∀ 𝑛 ∈ ∅ 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) |
4 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
5 |
|
hash1snb |
⊢ ( 𝑉 ∈ V → ( ( ♯ ‘ 𝑉 ) = 1 ↔ ∃ 𝑛 𝑉 = { 𝑛 } ) ) |
6 |
4 5
|
ax-mp |
⊢ ( ( ♯ ‘ 𝑉 ) = 1 ↔ ∃ 𝑛 𝑉 = { 𝑛 } ) |
7 |
|
velsn |
⊢ ( 𝑣 ∈ { 𝑛 } ↔ 𝑣 = 𝑛 ) |
8 |
|
sneq |
⊢ ( 𝑣 = 𝑛 → { 𝑣 } = { 𝑛 } ) |
9 |
8
|
difeq2d |
⊢ ( 𝑣 = 𝑛 → ( { 𝑛 } ∖ { 𝑣 } ) = ( { 𝑛 } ∖ { 𝑛 } ) ) |
10 |
|
difid |
⊢ ( { 𝑛 } ∖ { 𝑛 } ) = ∅ |
11 |
9 10
|
eqtrdi |
⊢ ( 𝑣 = 𝑛 → ( { 𝑛 } ∖ { 𝑣 } ) = ∅ ) |
12 |
7 11
|
sylbi |
⊢ ( 𝑣 ∈ { 𝑛 } → ( { 𝑛 } ∖ { 𝑣 } ) = ∅ ) |
13 |
12
|
a1i |
⊢ ( 𝑉 = { 𝑛 } → ( 𝑣 ∈ { 𝑛 } → ( { 𝑛 } ∖ { 𝑣 } ) = ∅ ) ) |
14 |
|
eleq2 |
⊢ ( 𝑉 = { 𝑛 } → ( 𝑣 ∈ 𝑉 ↔ 𝑣 ∈ { 𝑛 } ) ) |
15 |
|
difeq1 |
⊢ ( 𝑉 = { 𝑛 } → ( 𝑉 ∖ { 𝑣 } ) = ( { 𝑛 } ∖ { 𝑣 } ) ) |
16 |
15
|
eqeq1d |
⊢ ( 𝑉 = { 𝑛 } → ( ( 𝑉 ∖ { 𝑣 } ) = ∅ ↔ ( { 𝑛 } ∖ { 𝑣 } ) = ∅ ) ) |
17 |
13 14 16
|
3imtr4d |
⊢ ( 𝑉 = { 𝑛 } → ( 𝑣 ∈ 𝑉 → ( 𝑉 ∖ { 𝑣 } ) = ∅ ) ) |
18 |
17
|
exlimiv |
⊢ ( ∃ 𝑛 𝑉 = { 𝑛 } → ( 𝑣 ∈ 𝑉 → ( 𝑉 ∖ { 𝑣 } ) = ∅ ) ) |
19 |
6 18
|
sylbi |
⊢ ( ( ♯ ‘ 𝑉 ) = 1 → ( 𝑣 ∈ 𝑉 → ( 𝑉 ∖ { 𝑣 } ) = ∅ ) ) |
20 |
19
|
imp |
⊢ ( ( ( ♯ ‘ 𝑉 ) = 1 ∧ 𝑣 ∈ 𝑉 ) → ( 𝑉 ∖ { 𝑣 } ) = ∅ ) |
21 |
20
|
raleqdv |
⊢ ( ( ( ♯ ‘ 𝑉 ) = 1 ∧ 𝑣 ∈ 𝑉 ) → ( ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑛 ∈ ∅ 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
22 |
3 21
|
mpbiri |
⊢ ( ( ( ♯ ‘ 𝑉 ) = 1 ∧ 𝑣 ∈ 𝑉 ) → ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) |
23 |
1
|
uvtxel |
⊢ ( 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ↔ ( 𝑣 ∈ 𝑉 ∧ ∀ 𝑛 ∈ ( 𝑉 ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
24 |
2 22 23
|
sylanbrc |
⊢ ( ( ( ♯ ‘ 𝑉 ) = 1 ∧ 𝑣 ∈ 𝑉 ) → 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) |
25 |
24
|
ralrimiva |
⊢ ( ( ♯ ‘ 𝑉 ) = 1 → ∀ 𝑣 ∈ 𝑉 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) |
26 |
1
|
cplgr1vlem |
⊢ ( ( ♯ ‘ 𝑉 ) = 1 → 𝐺 ∈ V ) |
27 |
1
|
iscplgr |
⊢ ( 𝐺 ∈ V → ( 𝐺 ∈ ComplGraph ↔ ∀ 𝑣 ∈ 𝑉 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) ) |
28 |
26 27
|
syl |
⊢ ( ( ♯ ‘ 𝑉 ) = 1 → ( 𝐺 ∈ ComplGraph ↔ ∀ 𝑣 ∈ 𝑉 𝑣 ∈ ( UnivVtx ‘ 𝐺 ) ) ) |
29 |
25 28
|
mpbird |
⊢ ( ( ♯ ‘ 𝑉 ) = 1 → 𝐺 ∈ ComplGraph ) |