Metamath Proof Explorer


Theorem cplgr1vlem

Description: Lemma for cplgr1v and cusgr1v . (Contributed by AV, 23-Mar-2021)

Ref Expression
Hypothesis cplgr0v.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion cplgr1vlem ( ( ♯ ‘ 𝑉 ) = 1 → 𝐺 ∈ V )

Proof

Step Hyp Ref Expression
1 cplgr0v.v 𝑉 = ( Vtx ‘ 𝐺 )
2 1 fvexi 𝑉 ∈ V
3 hash1snb ( 𝑉 ∈ V → ( ( ♯ ‘ 𝑉 ) = 1 ↔ ∃ 𝑛 𝑉 = { 𝑛 } ) )
4 2 3 ax-mp ( ( ♯ ‘ 𝑉 ) = 1 ↔ ∃ 𝑛 𝑉 = { 𝑛 } )
5 vsnid 𝑛 ∈ { 𝑛 }
6 eleq2 ( 𝑉 = { 𝑛 } → ( 𝑛𝑉𝑛 ∈ { 𝑛 } ) )
7 5 6 mpbiri ( 𝑉 = { 𝑛 } → 𝑛𝑉 )
8 1 1vgrex ( 𝑛𝑉𝐺 ∈ V )
9 7 8 syl ( 𝑉 = { 𝑛 } → 𝐺 ∈ V )
10 9 exlimiv ( ∃ 𝑛 𝑉 = { 𝑛 } → 𝐺 ∈ V )
11 4 10 sylbi ( ( ♯ ‘ 𝑉 ) = 1 → 𝐺 ∈ V )