Description: Lemma for cplgr1v and cusgr1v . (Contributed by AV, 23-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cplgr0v.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
Assertion | cplgr1vlem | ⊢ ( ( ♯ ‘ 𝑉 ) = 1 → 𝐺 ∈ V ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cplgr0v.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
2 | 1 | fvexi | ⊢ 𝑉 ∈ V |
3 | hash1snb | ⊢ ( 𝑉 ∈ V → ( ( ♯ ‘ 𝑉 ) = 1 ↔ ∃ 𝑛 𝑉 = { 𝑛 } ) ) | |
4 | 2 3 | ax-mp | ⊢ ( ( ♯ ‘ 𝑉 ) = 1 ↔ ∃ 𝑛 𝑉 = { 𝑛 } ) |
5 | vsnid | ⊢ 𝑛 ∈ { 𝑛 } | |
6 | eleq2 | ⊢ ( 𝑉 = { 𝑛 } → ( 𝑛 ∈ 𝑉 ↔ 𝑛 ∈ { 𝑛 } ) ) | |
7 | 5 6 | mpbiri | ⊢ ( 𝑉 = { 𝑛 } → 𝑛 ∈ 𝑉 ) |
8 | 1 | 1vgrex | ⊢ ( 𝑛 ∈ 𝑉 → 𝐺 ∈ V ) |
9 | 7 8 | syl | ⊢ ( 𝑉 = { 𝑛 } → 𝐺 ∈ V ) |
10 | 9 | exlimiv | ⊢ ( ∃ 𝑛 𝑉 = { 𝑛 } → 𝐺 ∈ V ) |
11 | 4 10 | sylbi | ⊢ ( ( ♯ ‘ 𝑉 ) = 1 → 𝐺 ∈ V ) |