Step |
Hyp |
Ref |
Expression |
1 |
|
cplgr3v.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
2 |
|
cplgr3v.t |
⊢ ( Vtx ‘ 𝐺 ) = { 𝐴 , 𝐵 , 𝐶 } |
3 |
2
|
eqcomi |
⊢ { 𝐴 , 𝐵 , 𝐶 } = ( Vtx ‘ 𝐺 ) |
4 |
3
|
iscplgrnb |
⊢ ( 𝐺 ∈ UPGraph → ( 𝐺 ∈ ComplGraph ↔ ∀ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ∀ 𝑛 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
5 |
4
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐺 ∈ ComplGraph ↔ ∀ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ∀ 𝑛 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ) ) |
6 |
|
sneq |
⊢ ( 𝑣 = 𝐴 → { 𝑣 } = { 𝐴 } ) |
7 |
6
|
difeq2d |
⊢ ( 𝑣 = 𝐴 → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) = ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) ) |
8 |
|
tprot |
⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐵 , 𝐶 , 𝐴 } |
9 |
8
|
difeq1i |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) = ( { 𝐵 , 𝐶 , 𝐴 } ∖ { 𝐴 } ) |
10 |
|
necom |
⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴 ) |
11 |
|
necom |
⊢ ( 𝐴 ≠ 𝐶 ↔ 𝐶 ≠ 𝐴 ) |
12 |
|
diftpsn3 |
⊢ ( ( 𝐵 ≠ 𝐴 ∧ 𝐶 ≠ 𝐴 ) → ( { 𝐵 , 𝐶 , 𝐴 } ∖ { 𝐴 } ) = { 𝐵 , 𝐶 } ) |
13 |
10 11 12
|
syl2anb |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ) → ( { 𝐵 , 𝐶 , 𝐴 } ∖ { 𝐴 } ) = { 𝐵 , 𝐶 } ) |
14 |
13
|
3adant3 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐵 , 𝐶 , 𝐴 } ∖ { 𝐴 } ) = { 𝐵 , 𝐶 } ) |
15 |
9 14
|
syl5eq |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) = { 𝐵 , 𝐶 } ) |
16 |
15
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐴 } ) = { 𝐵 , 𝐶 } ) |
17 |
7 16
|
sylan9eqr |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ 𝑣 = 𝐴 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) = { 𝐵 , 𝐶 } ) |
18 |
|
oveq2 |
⊢ ( 𝑣 = 𝐴 → ( 𝐺 NeighbVtx 𝑣 ) = ( 𝐺 NeighbVtx 𝐴 ) ) |
19 |
18
|
eleq2d |
⊢ ( 𝑣 = 𝐴 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
20 |
19
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ 𝑣 = 𝐴 ) → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
21 |
17 20
|
raleqbidv |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ 𝑣 = 𝐴 ) → ( ∀ 𝑛 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑛 ∈ { 𝐵 , 𝐶 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
22 |
|
sneq |
⊢ ( 𝑣 = 𝐵 → { 𝑣 } = { 𝐵 } ) |
23 |
22
|
difeq2d |
⊢ ( 𝑣 = 𝐵 → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) = ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) ) |
24 |
|
tprot |
⊢ { 𝐶 , 𝐴 , 𝐵 } = { 𝐴 , 𝐵 , 𝐶 } |
25 |
24
|
eqcomi |
⊢ { 𝐴 , 𝐵 , 𝐶 } = { 𝐶 , 𝐴 , 𝐵 } |
26 |
25
|
difeq1i |
⊢ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) = ( { 𝐶 , 𝐴 , 𝐵 } ∖ { 𝐵 } ) |
27 |
|
necom |
⊢ ( 𝐵 ≠ 𝐶 ↔ 𝐶 ≠ 𝐵 ) |
28 |
27
|
biimpi |
⊢ ( 𝐵 ≠ 𝐶 → 𝐶 ≠ 𝐵 ) |
29 |
28
|
anim2i |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐵 ) ) |
30 |
29
|
ancomd |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) → ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) ) |
31 |
|
diftpsn3 |
⊢ ( ( 𝐶 ≠ 𝐵 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐶 , 𝐴 , 𝐵 } ∖ { 𝐵 } ) = { 𝐶 , 𝐴 } ) |
32 |
30 31
|
syl |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐶 , 𝐴 , 𝐵 } ∖ { 𝐵 } ) = { 𝐶 , 𝐴 } ) |
33 |
32
|
3adant2 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐶 , 𝐴 , 𝐵 } ∖ { 𝐵 } ) = { 𝐶 , 𝐴 } ) |
34 |
26 33
|
syl5eq |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) = { 𝐶 , 𝐴 } ) |
35 |
34
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐵 } ) = { 𝐶 , 𝐴 } ) |
36 |
23 35
|
sylan9eqr |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ 𝑣 = 𝐵 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) = { 𝐶 , 𝐴 } ) |
37 |
|
oveq2 |
⊢ ( 𝑣 = 𝐵 → ( 𝐺 NeighbVtx 𝑣 ) = ( 𝐺 NeighbVtx 𝐵 ) ) |
38 |
37
|
eleq2d |
⊢ ( 𝑣 = 𝐵 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ) |
39 |
38
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ 𝑣 = 𝐵 ) → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ) |
40 |
36 39
|
raleqbidv |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ 𝑣 = 𝐵 ) → ( ∀ 𝑛 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑛 ∈ { 𝐶 , 𝐴 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ) |
41 |
|
sneq |
⊢ ( 𝑣 = 𝐶 → { 𝑣 } = { 𝐶 } ) |
42 |
41
|
difeq2d |
⊢ ( 𝑣 = 𝐶 → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) = ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) ) |
43 |
|
diftpsn3 |
⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) = { 𝐴 , 𝐵 } ) |
44 |
43
|
3adant1 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) = { 𝐴 , 𝐵 } ) |
45 |
44
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) = { 𝐴 , 𝐵 } ) |
46 |
42 45
|
sylan9eqr |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ 𝑣 = 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) = { 𝐴 , 𝐵 } ) |
47 |
|
oveq2 |
⊢ ( 𝑣 = 𝐶 → ( 𝐺 NeighbVtx 𝑣 ) = ( 𝐺 NeighbVtx 𝐶 ) ) |
48 |
47
|
eleq2d |
⊢ ( 𝑣 = 𝐶 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) |
49 |
48
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ 𝑣 = 𝐶 ) → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) |
50 |
46 49
|
raleqbidv |
⊢ ( ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) ∧ 𝑣 = 𝐶 ) → ( ∀ 𝑛 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ∀ 𝑛 ∈ { 𝐴 , 𝐵 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) |
51 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐴 ∈ 𝑋 ) |
52 |
51
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → 𝐴 ∈ 𝑋 ) |
53 |
|
simp2 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐵 ∈ 𝑌 ) |
54 |
53
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → 𝐵 ∈ 𝑌 ) |
55 |
|
simp3 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → 𝐶 ∈ 𝑍 ) |
56 |
55
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → 𝐶 ∈ 𝑍 ) |
57 |
21 40 50 52 54 56
|
raltpd |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ∀ 𝑣 ∈ { 𝐴 , 𝐵 , 𝐶 } ∀ 𝑛 ∈ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝑣 } ) 𝑛 ∈ ( 𝐺 NeighbVtx 𝑣 ) ↔ ( ∀ 𝑛 ∈ { 𝐵 , 𝐶 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ ∀ 𝑛 ∈ { 𝐶 , 𝐴 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ ∀ 𝑛 ∈ { 𝐴 , 𝐵 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ) |
58 |
|
eleq1 |
⊢ ( 𝑛 = 𝐵 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
59 |
|
eleq1 |
⊢ ( 𝑛 = 𝐶 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
60 |
58 59
|
ralprg |
⊢ ( ( 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ∀ 𝑛 ∈ { 𝐵 , 𝐶 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) ) |
61 |
60
|
3adant1 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ∀ 𝑛 ∈ { 𝐵 , 𝐶 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) ) |
62 |
|
eleq1 |
⊢ ( 𝑛 = 𝐶 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ↔ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ) |
63 |
|
eleq1 |
⊢ ( 𝑛 = 𝐴 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ↔ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ) |
64 |
62 63
|
ralprg |
⊢ ( ( 𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ) → ( ∀ 𝑛 ∈ { 𝐶 , 𝐴 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ↔ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ) ) |
65 |
64
|
ancoms |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍 ) → ( ∀ 𝑛 ∈ { 𝐶 , 𝐴 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ↔ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ) ) |
66 |
65
|
3adant2 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ∀ 𝑛 ∈ { 𝐶 , 𝐴 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ↔ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ) ) |
67 |
|
eleq1 |
⊢ ( 𝑛 = 𝐴 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ↔ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) |
68 |
|
eleq1 |
⊢ ( 𝑛 = 𝐵 → ( 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ↔ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) |
69 |
67 68
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ) → ( ∀ 𝑛 ∈ { 𝐴 , 𝐵 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ↔ ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ) |
70 |
69
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ∀ 𝑛 ∈ { 𝐴 , 𝐵 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ↔ ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ) |
71 |
61 66 70
|
3anbi123d |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ( ∀ 𝑛 ∈ { 𝐵 , 𝐶 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ ∀ 𝑛 ∈ { 𝐶 , 𝐴 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ ∀ 𝑛 ∈ { 𝐴 , 𝐵 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ↔ ( ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ∧ ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ) ) |
72 |
71
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ∀ 𝑛 ∈ { 𝐵 , 𝐶 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ ∀ 𝑛 ∈ { 𝐶 , 𝐴 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ ∀ 𝑛 ∈ { 𝐴 , 𝐵 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ↔ ( ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ∧ ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ) ) |
73 |
|
3an6 |
⊢ ( ( ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ∧ ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ↔ ( ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ) |
74 |
73
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) ∧ ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ↔ ( ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ) ) |
75 |
|
nbgrsym |
⊢ ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ) |
76 |
|
nbgrsym |
⊢ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ↔ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) |
77 |
|
nbgrsym |
⊢ ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ↔ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) |
78 |
75 76 77
|
3anbi123i |
⊢ ( ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ↔ ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
79 |
78
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ↔ ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) ) |
80 |
79
|
anbi1d |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ↔ ( ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ) ) |
81 |
|
3anrot |
⊢ ( ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ↔ ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ) |
82 |
81
|
bicomi |
⊢ ( ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ↔ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) |
83 |
82
|
anbi1i |
⊢ ( ( ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ↔ ( ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ) |
84 |
|
anidm |
⊢ ( ( ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ↔ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) |
85 |
83 84
|
bitri |
⊢ ( ( ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ↔ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) |
86 |
85
|
a1i |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ↔ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ) |
87 |
|
tpid1g |
⊢ ( 𝐴 ∈ 𝑋 → 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
88 |
|
tpid2g |
⊢ ( 𝐵 ∈ 𝑌 → 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
89 |
|
tpid3g |
⊢ ( 𝐶 ∈ 𝑍 → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
90 |
87 88 89
|
3anim123i |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
91 |
|
df-3an |
⊢ ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ↔ ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
92 |
90 91
|
sylib |
⊢ ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) → ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
93 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) → 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
94 |
93
|
anim1ci |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐺 ∈ UPGraph ) → ( 𝐺 ∈ UPGraph ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
95 |
94
|
3adant3 |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐺 ∈ UPGraph ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
96 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) → 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
97 |
|
simp1 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝐴 ≠ 𝐵 ) |
98 |
96 97
|
anim12i |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐴 ≠ 𝐵 ) ) |
99 |
3 1
|
nbupgrel |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐴 ≠ 𝐵 ) ) → ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
100 |
95 98 99
|
3imp3i2an |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ↔ { 𝐴 , 𝐵 } ∈ 𝐸 ) ) |
101 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) → 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) |
102 |
101
|
anim1ci |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐺 ∈ UPGraph ) → ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
103 |
102
|
3adant3 |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
104 |
|
simp3 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝐵 ≠ 𝐶 ) |
105 |
93 104
|
anim12i |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ≠ 𝐶 ) ) |
106 |
3 1
|
nbupgrel |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ ( 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ↔ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) |
107 |
103 105 106
|
3imp3i2an |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ↔ { 𝐵 , 𝐶 } ∈ 𝐸 ) ) |
108 |
96
|
anim1ci |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐺 ∈ UPGraph ) → ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
109 |
108
|
3adant3 |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ) |
110 |
|
simp2 |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝐴 ≠ 𝐶 ) |
111 |
110
|
necomd |
⊢ ( ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → 𝐶 ≠ 𝐴 ) |
112 |
101 111
|
anim12i |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐶 ≠ 𝐴 ) ) |
113 |
3 1
|
nbupgrel |
⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ ( 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐶 ≠ 𝐴 ) ) → ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) |
114 |
109 112 113
|
3imp3i2an |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ↔ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) |
115 |
100 107 114
|
3anbi123d |
⊢ ( ( ( ( 𝐴 ∈ { 𝐴 , 𝐵 , 𝐶 } ∧ 𝐵 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐶 ∈ { 𝐴 , 𝐵 , 𝐶 } ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) ) |
116 |
92 115
|
syl3an1 |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ) ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) ) |
117 |
81 116
|
syl5bb |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) ) |
118 |
80 86 117
|
3bitrd |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ( 𝐵 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐶 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ∧ ( 𝐶 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ 𝐴 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ 𝐵 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ) ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) ) |
119 |
72 74 118
|
3bitrd |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( ( ∀ 𝑛 ∈ { 𝐵 , 𝐶 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐴 ) ∧ ∀ 𝑛 ∈ { 𝐶 , 𝐴 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐵 ) ∧ ∀ 𝑛 ∈ { 𝐴 , 𝐵 } 𝑛 ∈ ( 𝐺 NeighbVtx 𝐶 ) ) ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) ) |
120 |
5 57 119
|
3bitrd |
⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍 ) ∧ 𝐺 ∈ UPGraph ∧ ( 𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝐺 ∈ ComplGraph ↔ ( { 𝐴 , 𝐵 } ∈ 𝐸 ∧ { 𝐵 , 𝐶 } ∈ 𝐸 ∧ { 𝐶 , 𝐴 } ∈ 𝐸 ) ) ) |