Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
iscplgredg |
⊢ ( 𝐺 ∈ ComplGraph → ( 𝐺 ∈ ComplGraph ↔ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ) ) |
4 |
|
edgval |
⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) |
5 |
4
|
a1i |
⊢ ( 𝐺 ∈ ComplGraph → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
6 |
|
simpl |
⊢ ( ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
7 |
6
|
adantl |
⊢ ( ( ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ∧ ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) ) → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
8 |
6
|
difeq1d |
⊢ ( ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) → ( ( Vtx ‘ 𝑔 ) ∖ { 𝑣 } ) = ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) ) |
9 |
8
|
adantl |
⊢ ( ( ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ∧ ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) ) → ( ( Vtx ‘ 𝑔 ) ∖ { 𝑣 } ) = ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) ) |
10 |
|
edgval |
⊢ ( Edg ‘ 𝑔 ) = ran ( iEdg ‘ 𝑔 ) |
11 |
|
simpr |
⊢ ( ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) → ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) |
12 |
11
|
rneqd |
⊢ ( ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) → ran ( iEdg ‘ 𝑔 ) = ran ( iEdg ‘ 𝐺 ) ) |
13 |
10 12
|
eqtrid |
⊢ ( ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) → ( Edg ‘ 𝑔 ) = ran ( iEdg ‘ 𝐺 ) ) |
14 |
13
|
adantl |
⊢ ( ( ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ∧ ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) ) → ( Edg ‘ 𝑔 ) = ran ( iEdg ‘ 𝐺 ) ) |
15 |
|
simpl |
⊢ ( ( ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ∧ ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) ) → ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ) |
16 |
14 15
|
eqtr4d |
⊢ ( ( ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ∧ ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) ) → ( Edg ‘ 𝑔 ) = ( Edg ‘ 𝐺 ) ) |
17 |
16
|
rexeqdv |
⊢ ( ( ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ∧ ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) ) → ( ∃ 𝑒 ∈ ( Edg ‘ 𝑔 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ↔ ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ) ) |
18 |
9 17
|
raleqbidv |
⊢ ( ( ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ∧ ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) ) → ( ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑣 } ) ∃ 𝑒 ∈ ( Edg ‘ 𝑔 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ↔ ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ) ) |
19 |
7 18
|
raleqbidv |
⊢ ( ( ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ∧ ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) ) → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑣 } ) ∃ 𝑒 ∈ ( Edg ‘ 𝑔 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ↔ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ) ) |
20 |
19
|
biimpar |
⊢ ( ( ( ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ∧ ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ) → ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑣 } ) ∃ 𝑒 ∈ ( Edg ‘ 𝑔 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ) |
21 |
|
eqid |
⊢ ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝑔 ) |
22 |
|
eqid |
⊢ ( Edg ‘ 𝑔 ) = ( Edg ‘ 𝑔 ) |
23 |
21 22
|
iscplgredg |
⊢ ( 𝑔 ∈ V → ( 𝑔 ∈ ComplGraph ↔ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑣 } ) ∃ 𝑒 ∈ ( Edg ‘ 𝑔 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ) ) |
24 |
23
|
elv |
⊢ ( 𝑔 ∈ ComplGraph ↔ ∀ 𝑣 ∈ ( Vtx ‘ 𝑔 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝑔 ) ∖ { 𝑣 } ) ∃ 𝑒 ∈ ( Edg ‘ 𝑔 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ) |
25 |
20 24
|
sylibr |
⊢ ( ( ( ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ∧ ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) ) ∧ ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑛 } ⊆ 𝑒 ) → 𝑔 ∈ ComplGraph ) |
26 |
25
|
expcom |
⊢ ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑛 } ⊆ 𝑒 → ( ( ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) ∧ ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) ) → 𝑔 ∈ ComplGraph ) ) |
27 |
26
|
expd |
⊢ ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑛 } ⊆ 𝑒 → ( ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) → ( ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) → 𝑔 ∈ ComplGraph ) ) ) |
28 |
5 27
|
syl5com |
⊢ ( 𝐺 ∈ ComplGraph → ( ∀ 𝑣 ∈ ( Vtx ‘ 𝐺 ) ∀ 𝑛 ∈ ( ( Vtx ‘ 𝐺 ) ∖ { 𝑣 } ) ∃ 𝑒 ∈ ( Edg ‘ 𝐺 ) { 𝑣 , 𝑛 } ⊆ 𝑒 → ( ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) → 𝑔 ∈ ComplGraph ) ) ) |
29 |
3 28
|
sylbid |
⊢ ( 𝐺 ∈ ComplGraph → ( 𝐺 ∈ ComplGraph → ( ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) → 𝑔 ∈ ComplGraph ) ) ) |
30 |
29
|
pm2.43i |
⊢ ( 𝐺 ∈ ComplGraph → ( ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) → 𝑔 ∈ ComplGraph ) ) |
31 |
30
|
alrimiv |
⊢ ( 𝐺 ∈ ComplGraph → ∀ 𝑔 ( ( ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ∧ ( iEdg ‘ 𝑔 ) = ( iEdg ‘ 𝐺 ) ) → 𝑔 ∈ ComplGraph ) ) |
32 |
|
fvexd |
⊢ ( 𝐺 ∈ ComplGraph → ( Vtx ‘ 𝐺 ) ∈ V ) |
33 |
|
fvexd |
⊢ ( 𝐺 ∈ ComplGraph → ( iEdg ‘ 𝐺 ) ∈ V ) |
34 |
31 32 33
|
gropeld |
⊢ ( 𝐺 ∈ ComplGraph → 〈 ( Vtx ‘ 𝐺 ) , ( iEdg ‘ 𝐺 ) 〉 ∈ ComplGraph ) |