Metamath Proof Explorer


Theorem cplgruvtxb

Description: A graph G is complete iff each vertex is a universal vertex. (Contributed by Alexander van der Vekens, 14-Oct-2017) (Revised by AV, 15-Feb-2022)

Ref Expression
Hypothesis cplgruvtxb.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion cplgruvtxb ( 𝐺𝑊 → ( 𝐺 ∈ ComplGraph ↔ ( UnivVtx ‘ 𝐺 ) = 𝑉 ) )

Proof

Step Hyp Ref Expression
1 cplgruvtxb.v 𝑉 = ( Vtx ‘ 𝐺 )
2 fveq2 ( 𝑔 = 𝐺 → ( UnivVtx ‘ 𝑔 ) = ( UnivVtx ‘ 𝐺 ) )
3 fveq2 ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) )
4 3 1 eqtr4di ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = 𝑉 )
5 2 4 eqeq12d ( 𝑔 = 𝐺 → ( ( UnivVtx ‘ 𝑔 ) = ( Vtx ‘ 𝑔 ) ↔ ( UnivVtx ‘ 𝐺 ) = 𝑉 ) )
6 df-cplgr ComplGraph = { 𝑔 ∣ ( UnivVtx ‘ 𝑔 ) = ( Vtx ‘ 𝑔 ) }
7 5 6 elab2g ( 𝐺𝑊 → ( 𝐺 ∈ ComplGraph ↔ ( UnivVtx ‘ 𝐺 ) = 𝑉 ) )