Step |
Hyp |
Ref |
Expression |
1 |
|
cply1coe0.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
2 |
|
cply1coe0.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
cply1coe0.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
cply1coe0.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
5 |
|
cply1coe0.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
6 |
3 5 1 2
|
coe1scl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) → ( coe1 ‘ ( 𝐴 ‘ 𝑆 ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , 𝑆 , 0 ) ) ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) ∧ 𝑛 ∈ ℕ ) → ( coe1 ‘ ( 𝐴 ‘ 𝑆 ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , 𝑆 , 0 ) ) ) |
8 |
|
nnne0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) |
9 |
8
|
neneqd |
⊢ ( 𝑛 ∈ ℕ → ¬ 𝑛 = 0 ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) ∧ 𝑛 ∈ ℕ ) → ¬ 𝑛 = 0 ) |
11 |
10
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ¬ 𝑛 = 0 ) |
12 |
|
eqeq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 = 0 ↔ 𝑛 = 0 ) ) |
13 |
12
|
notbid |
⊢ ( 𝑘 = 𝑛 → ( ¬ 𝑘 = 0 ↔ ¬ 𝑛 = 0 ) ) |
14 |
13
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( ¬ 𝑘 = 0 ↔ ¬ 𝑛 = 0 ) ) |
15 |
11 14
|
mpbird |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ¬ 𝑘 = 0 ) |
16 |
15
|
iffalsed |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → if ( 𝑘 = 0 , 𝑆 , 0 ) = 0 ) |
17 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
18 |
17
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
19 |
2
|
fvexi |
⊢ 0 ∈ V |
20 |
19
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) ∧ 𝑛 ∈ ℕ ) → 0 ∈ V ) |
21 |
7 16 18 20
|
fvmptd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) ∧ 𝑛 ∈ ℕ ) → ( ( coe1 ‘ ( 𝐴 ‘ 𝑆 ) ) ‘ 𝑛 ) = 0 ) |
22 |
21
|
ralrimiva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑆 ∈ 𝐾 ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝐴 ‘ 𝑆 ) ) ‘ 𝑛 ) = 0 ) |