| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cply1coe0.k | ⊢ 𝐾  =  ( Base ‘ 𝑅 ) | 
						
							| 2 |  | cply1coe0.0 | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 3 |  | cply1coe0.p | ⊢ 𝑃  =  ( Poly1 ‘ 𝑅 ) | 
						
							| 4 |  | cply1coe0.b | ⊢ 𝐵  =  ( Base ‘ 𝑃 ) | 
						
							| 5 |  | cply1coe0.a | ⊢ 𝐴  =  ( algSc ‘ 𝑃 ) | 
						
							| 6 | 3 5 1 2 | coe1scl | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑆  ∈  𝐾 )  →  ( coe1 ‘ ( 𝐴 ‘ 𝑆 ) )  =  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  𝑆 ,   0  ) ) ) | 
						
							| 7 | 6 | adantr | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑆  ∈  𝐾 )  ∧  𝑛  ∈  ℕ )  →  ( coe1 ‘ ( 𝐴 ‘ 𝑆 ) )  =  ( 𝑘  ∈  ℕ0  ↦  if ( 𝑘  =  0 ,  𝑆 ,   0  ) ) ) | 
						
							| 8 |  | nnne0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ≠  0 ) | 
						
							| 9 | 8 | neneqd | ⊢ ( 𝑛  ∈  ℕ  →  ¬  𝑛  =  0 ) | 
						
							| 10 | 9 | adantl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑆  ∈  𝐾 )  ∧  𝑛  ∈  ℕ )  →  ¬  𝑛  =  0 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑆  ∈  𝐾 )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  =  𝑛 )  →  ¬  𝑛  =  0 ) | 
						
							| 12 |  | eqeq1 | ⊢ ( 𝑘  =  𝑛  →  ( 𝑘  =  0  ↔  𝑛  =  0 ) ) | 
						
							| 13 | 12 | notbid | ⊢ ( 𝑘  =  𝑛  →  ( ¬  𝑘  =  0  ↔  ¬  𝑛  =  0 ) ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑆  ∈  𝐾 )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  =  𝑛 )  →  ( ¬  𝑘  =  0  ↔  ¬  𝑛  =  0 ) ) | 
						
							| 15 | 11 14 | mpbird | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑆  ∈  𝐾 )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  =  𝑛 )  →  ¬  𝑘  =  0 ) | 
						
							| 16 | 15 | iffalsed | ⊢ ( ( ( ( 𝑅  ∈  Ring  ∧  𝑆  ∈  𝐾 )  ∧  𝑛  ∈  ℕ )  ∧  𝑘  =  𝑛 )  →  if ( 𝑘  =  0 ,  𝑆 ,   0  )  =   0  ) | 
						
							| 17 |  | nnnn0 | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℕ0 ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑆  ∈  𝐾 )  ∧  𝑛  ∈  ℕ )  →  𝑛  ∈  ℕ0 ) | 
						
							| 19 | 2 | fvexi | ⊢  0   ∈  V | 
						
							| 20 | 19 | a1i | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑆  ∈  𝐾 )  ∧  𝑛  ∈  ℕ )  →   0   ∈  V ) | 
						
							| 21 | 7 16 18 20 | fvmptd | ⊢ ( ( ( 𝑅  ∈  Ring  ∧  𝑆  ∈  𝐾 )  ∧  𝑛  ∈  ℕ )  →  ( ( coe1 ‘ ( 𝐴 ‘ 𝑆 ) ) ‘ 𝑛 )  =   0  ) | 
						
							| 22 | 21 | ralrimiva | ⊢ ( ( 𝑅  ∈  Ring  ∧  𝑆  ∈  𝐾 )  →  ∀ 𝑛  ∈  ℕ ( ( coe1 ‘ ( 𝐴 ‘ 𝑆 ) ) ‘ 𝑛 )  =   0  ) |