Step |
Hyp |
Ref |
Expression |
1 |
|
cply1coe0.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
2 |
|
cply1coe0.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
3 |
|
cply1coe0.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
cply1coe0.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
5 |
|
cply1coe0.a |
⊢ 𝐴 = ( algSc ‘ 𝑃 ) |
6 |
1 2 3 4 5
|
cply1coe0 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑠 ∈ 𝐾 ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝐴 ‘ 𝑠 ) ) ‘ 𝑛 ) = 0 ) |
7 |
6
|
ad4ant13 |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝐾 ) ∧ 𝑀 = ( 𝐴 ‘ 𝑠 ) ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝐴 ‘ 𝑠 ) ) ‘ 𝑛 ) = 0 ) |
8 |
|
fveq2 |
⊢ ( 𝑀 = ( 𝐴 ‘ 𝑠 ) → ( coe1 ‘ 𝑀 ) = ( coe1 ‘ ( 𝐴 ‘ 𝑠 ) ) ) |
9 |
8
|
fveq1d |
⊢ ( 𝑀 = ( 𝐴 ‘ 𝑠 ) → ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ 𝑠 ) ) ‘ 𝑛 ) ) |
10 |
9
|
eqeq1d |
⊢ ( 𝑀 = ( 𝐴 ‘ 𝑠 ) → ( ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ↔ ( ( coe1 ‘ ( 𝐴 ‘ 𝑠 ) ) ‘ 𝑛 ) = 0 ) ) |
11 |
10
|
ralbidv |
⊢ ( 𝑀 = ( 𝐴 ‘ 𝑠 ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ↔ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝐴 ‘ 𝑠 ) ) ‘ 𝑛 ) = 0 ) ) |
12 |
11
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝐾 ) ∧ 𝑀 = ( 𝐴 ‘ 𝑠 ) ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ↔ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝐴 ‘ 𝑠 ) ) ‘ 𝑛 ) = 0 ) ) |
13 |
7 12
|
mpbird |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ 𝐾 ) ∧ 𝑀 = ( 𝐴 ‘ 𝑠 ) ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) |
14 |
13
|
rexlimdva2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑠 ∈ 𝐾 𝑀 = ( 𝐴 ‘ 𝑠 ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) ) |
15 |
|
simpr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑀 ∈ 𝐵 ) |
16 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
17 |
|
eqid |
⊢ ( coe1 ‘ 𝑀 ) = ( coe1 ‘ 𝑀 ) |
18 |
17 4 3 1
|
coe1fvalcl |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 0 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ∈ 𝐾 ) |
19 |
15 16 18
|
sylancl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ∈ 𝐾 ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ∈ 𝐾 ) |
21 |
|
fveq2 |
⊢ ( 𝑠 = ( ( coe1 ‘ 𝑀 ) ‘ 0 ) → ( 𝐴 ‘ 𝑠 ) = ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) |
22 |
21
|
eqeq2d |
⊢ ( 𝑠 = ( ( coe1 ‘ 𝑀 ) ‘ 0 ) → ( 𝑀 = ( 𝐴 ‘ 𝑠 ) ↔ 𝑀 = ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ) |
23 |
22
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) ∧ 𝑠 = ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) → ( 𝑀 = ( 𝐴 ‘ 𝑠 ) ↔ 𝑀 = ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ) |
24 |
|
simpl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
25 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
26 |
3
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
27 |
3
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
28 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
29 |
5 25 26 27 28 4
|
asclf |
⊢ ( 𝑅 ∈ Ring → 𝐴 : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ 𝐵 ) |
30 |
29
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝐴 : ( Base ‘ ( Scalar ‘ 𝑃 ) ) ⟶ 𝐵 ) |
31 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
32 |
17 4 3 31
|
coe1fvalcl |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 0 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) |
33 |
15 16 32
|
sylancl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) |
34 |
3
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
35 |
34
|
eqcomd |
⊢ ( 𝑅 ∈ Ring → ( Scalar ‘ 𝑃 ) = 𝑅 ) |
36 |
35
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝑅 ) ) |
37 |
36
|
adantr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ 𝑅 ) ) |
38 |
33 37
|
eleqtrrd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
39 |
30 38
|
ffvelrnd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ∈ 𝐵 ) |
40 |
24 15 39
|
3jca |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ∈ 𝐵 ) ) |
41 |
40
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ∈ 𝐵 ) ) |
42 |
|
simpr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) |
43 |
3 5 1 2
|
coe1scl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ∈ 𝐾 ) → ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( coe1 ‘ 𝑀 ) ‘ 0 ) , 0 ) ) ) |
44 |
19 43
|
syldan |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( coe1 ‘ 𝑀 ) ‘ 0 ) , 0 ) ) ) |
45 |
44
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) = ( 𝑘 ∈ ℕ0 ↦ if ( 𝑘 = 0 , ( ( coe1 ‘ 𝑀 ) ‘ 0 ) , 0 ) ) ) |
46 |
|
nnne0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ≠ 0 ) |
47 |
46
|
neneqd |
⊢ ( 𝑛 ∈ ℕ → ¬ 𝑛 = 0 ) |
48 |
47
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ¬ 𝑛 = 0 ) |
49 |
48
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ¬ 𝑛 = 0 ) |
50 |
|
eqeq1 |
⊢ ( 𝑘 = 𝑛 → ( 𝑘 = 0 ↔ 𝑛 = 0 ) ) |
51 |
50
|
notbid |
⊢ ( 𝑘 = 𝑛 → ( ¬ 𝑘 = 0 ↔ ¬ 𝑛 = 0 ) ) |
52 |
51
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ( ¬ 𝑘 = 0 ↔ ¬ 𝑛 = 0 ) ) |
53 |
49 52
|
mpbird |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → ¬ 𝑘 = 0 ) |
54 |
53
|
iffalsed |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 = 𝑛 ) → if ( 𝑘 = 0 , ( ( coe1 ‘ 𝑀 ) ‘ 0 ) , 0 ) = 0 ) |
55 |
|
nnnn0 |
⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 ) |
56 |
55
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 ) |
57 |
2
|
fvexi |
⊢ 0 ∈ V |
58 |
57
|
a1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 0 ∈ V ) |
59 |
45 54 56 58
|
fvmptd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) = 0 ) |
60 |
59
|
eqcomd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → 0 = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ) |
61 |
60
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → 0 = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ) |
62 |
42 61
|
eqtrd |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) ∧ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ) |
63 |
62
|
ex |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ ) → ( ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 → ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ) ) |
64 |
63
|
ralimdva |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ) ) |
65 |
64
|
imp |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ) |
66 |
3 5 1
|
ply1sclid |
⊢ ( ( 𝑅 ∈ Ring ∧ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ∈ 𝐾 ) → ( ( coe1 ‘ 𝑀 ) ‘ 0 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 0 ) ) |
67 |
19 66
|
syldan |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ( coe1 ‘ 𝑀 ) ‘ 0 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 0 ) ) |
68 |
67
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → ( ( coe1 ‘ 𝑀 ) ‘ 0 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 0 ) ) |
69 |
|
df-n0 |
⊢ ℕ0 = ( ℕ ∪ { 0 } ) |
70 |
69
|
raleqi |
⊢ ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ↔ ∀ 𝑛 ∈ ( ℕ ∪ { 0 } ) ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ) |
71 |
|
c0ex |
⊢ 0 ∈ V |
72 |
|
fveq2 |
⊢ ( 𝑛 = 0 → ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) |
73 |
|
fveq2 |
⊢ ( 𝑛 = 0 → ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 0 ) ) |
74 |
72 73
|
eqeq12d |
⊢ ( 𝑛 = 0 → ( ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ↔ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 0 ) ) ) |
75 |
74
|
ralunsn |
⊢ ( 0 ∈ V → ( ∀ 𝑛 ∈ ( ℕ ∪ { 0 } ) ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ↔ ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ∧ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 0 ) ) ) ) |
76 |
71 75
|
mp1i |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → ( ∀ 𝑛 ∈ ( ℕ ∪ { 0 } ) ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ↔ ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ∧ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 0 ) ) ) ) |
77 |
70 76
|
syl5bb |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ↔ ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ∧ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 0 ) ) ) ) |
78 |
65 68 77
|
mpbir2and |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) ) |
79 |
|
eqid |
⊢ ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) = ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) |
80 |
3 4 17 79
|
eqcoe1ply1eq |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ∈ 𝐵 ) → ( ∀ 𝑛 ∈ ℕ0 ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = ( ( coe1 ‘ ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ‘ 𝑛 ) → 𝑀 = ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) ) |
81 |
41 78 80
|
sylc |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → 𝑀 = ( 𝐴 ‘ ( ( coe1 ‘ 𝑀 ) ‘ 0 ) ) ) |
82 |
20 23 81
|
rspcedvd |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) → ∃ 𝑠 ∈ 𝐾 𝑀 = ( 𝐴 ‘ 𝑠 ) ) |
83 |
82
|
ex |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 → ∃ 𝑠 ∈ 𝐾 𝑀 = ( 𝐴 ‘ 𝑠 ) ) ) |
84 |
14 83
|
impbid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑠 ∈ 𝐾 𝑀 = ( 𝐴 ‘ 𝑠 ) ↔ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ 𝑀 ) ‘ 𝑛 ) = 0 ) ) |