Metamath Proof Explorer


Theorem cply1mul

Description: The product of two constant polynomials is a constant polynomial. (Contributed by AV, 18-Nov-2019)

Ref Expression
Hypotheses cply1mul.p 𝑃 = ( Poly1𝑅 )
cply1mul.b 𝐵 = ( Base ‘ 𝑃 )
cply1mul.0 0 = ( 0g𝑅 )
cply1mul.m × = ( .r𝑃 )
Assertion cply1mul ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ∀ 𝑐 ∈ ℕ ( ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) → ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝐹 × 𝐺 ) ) ‘ 𝑐 ) = 0 ) )

Proof

Step Hyp Ref Expression
1 cply1mul.p 𝑃 = ( Poly1𝑅 )
2 cply1mul.b 𝐵 = ( Base ‘ 𝑃 )
3 cply1mul.0 0 = ( 0g𝑅 )
4 cply1mul.m × = ( .r𝑃 )
5 eqid ( .r𝑅 ) = ( .r𝑅 )
6 1 4 5 2 coe1mul ( ( 𝑅 ∈ Ring ∧ 𝐹𝐵𝐺𝐵 ) → ( coe1 ‘ ( 𝐹 × 𝐺 ) ) = ( 𝑠 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑠𝑘 ) ) ) ) ) ) )
7 6 3expb ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( coe1 ‘ ( 𝐹 × 𝐺 ) ) = ( 𝑠 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑠𝑘 ) ) ) ) ) ) )
8 7 adantr ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ ∀ 𝑐 ∈ ℕ ( ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) ) → ( coe1 ‘ ( 𝐹 × 𝐺 ) ) = ( 𝑠 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑠𝑘 ) ) ) ) ) ) )
9 8 adantr ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ ∀ 𝑐 ∈ ℕ ( ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) ) ∧ 𝑛 ∈ ℕ ) → ( coe1 ‘ ( 𝐹 × 𝐺 ) ) = ( 𝑠 ∈ ℕ0 ↦ ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑠𝑘 ) ) ) ) ) ) )
10 oveq2 ( 𝑠 = 𝑛 → ( 0 ... 𝑠 ) = ( 0 ... 𝑛 ) )
11 fvoveq1 ( 𝑠 = 𝑛 → ( ( coe1𝐺 ) ‘ ( 𝑠𝑘 ) ) = ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) )
12 11 oveq2d ( 𝑠 = 𝑛 → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑠𝑘 ) ) ) = ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) )
13 10 12 mpteq12dv ( 𝑠 = 𝑛 → ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑠𝑘 ) ) ) ) = ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) ) )
14 13 oveq2d ( 𝑠 = 𝑛 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑠𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) ) ) )
15 14 adantl ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ ∀ 𝑐 ∈ ℕ ( ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑠 = 𝑛 ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑠𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) ) ) )
16 nnnn0 ( 𝑛 ∈ ℕ → 𝑛 ∈ ℕ0 )
17 16 adantl ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ ∀ 𝑐 ∈ ℕ ( ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ0 )
18 ovexd ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ ∀ 𝑐 ∈ ℕ ( ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) ) ) ∈ V )
19 9 15 17 18 fvmptd ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ ∀ 𝑐 ∈ ℕ ( ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( coe1 ‘ ( 𝐹 × 𝐺 ) ) ‘ 𝑛 ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) ) ) )
20 r19.26 ( ∀ 𝑐 ∈ ℕ ( ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) ↔ ( ∀ 𝑐 ∈ ℕ ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ∀ 𝑐 ∈ ℕ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) )
21 oveq2 ( 𝑘 = 0 → ( 𝑛𝑘 ) = ( 𝑛 − 0 ) )
22 nncn ( 𝑛 ∈ ℕ → 𝑛 ∈ ℂ )
23 22 subid1d ( 𝑛 ∈ ℕ → ( 𝑛 − 0 ) = 𝑛 )
24 23 adantr ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑛 − 0 ) = 𝑛 )
25 21 24 sylan9eqr ( ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 = 0 ) → ( 𝑛𝑘 ) = 𝑛 )
26 simpll ( ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 = 0 ) → 𝑛 ∈ ℕ )
27 25 26 eqeltrd ( ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 = 0 ) → ( 𝑛𝑘 ) ∈ ℕ )
28 fveqeq2 ( 𝑐 = ( 𝑛𝑘 ) → ( ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ↔ ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) = 0 ) )
29 28 rspcv ( ( 𝑛𝑘 ) ∈ ℕ → ( ∀ 𝑐 ∈ ℕ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 → ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) = 0 ) )
30 27 29 syl ( ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 = 0 ) → ( ∀ 𝑐 ∈ ℕ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 → ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) = 0 ) )
31 oveq2 ( ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) = 0 → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) 0 ) )
32 simpll ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 = 0 ) ) → 𝑅 ∈ Ring )
33 simprl ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → 𝐹𝐵 )
34 elfznn0 ( 𝑘 ∈ ( 0 ... 𝑛 ) → 𝑘 ∈ ℕ0 )
35 34 adantl ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝑘 ∈ ℕ0 )
36 35 adantr ( ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 = 0 ) → 𝑘 ∈ ℕ0 )
37 eqid ( coe1𝐹 ) = ( coe1𝐹 )
38 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
39 37 2 1 38 coe1fvalcl ( ( 𝐹𝐵𝑘 ∈ ℕ0 ) → ( ( coe1𝐹 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) )
40 33 36 39 syl2an ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 = 0 ) ) → ( ( coe1𝐹 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) )
41 38 5 3 ringrz ( ( 𝑅 ∈ Ring ∧ ( ( coe1𝐹 ) ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) 0 ) = 0 )
42 32 40 41 syl2anc ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 = 0 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) 0 ) = 0 )
43 31 42 sylan9eqr ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 = 0 ) ) ∧ ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) = 0 ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 )
44 43 ex ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 = 0 ) ) → ( ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) = 0 → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) )
45 44 expcom ( ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 = 0 ) → ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) = 0 → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) )
46 45 com23 ( ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 = 0 ) → ( ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) = 0 → ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) )
47 30 46 syldc ( ∀ 𝑐 ∈ ℕ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 → ( ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ 𝑘 = 0 ) → ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) )
48 47 expd ( ∀ 𝑐 ∈ ℕ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 → ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑘 = 0 → ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) ) )
49 48 com24 ( ∀ 𝑐 ∈ ℕ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 → ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( 𝑘 = 0 → ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) ) )
50 49 adantl ( ( ∀ 𝑐 ∈ ℕ ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ∀ 𝑐 ∈ ℕ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) → ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( 𝑘 = 0 → ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) ) )
51 50 com13 ( 𝑘 = 0 → ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ( ∀ 𝑐 ∈ ℕ ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ∀ 𝑐 ∈ ℕ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) → ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) ) )
52 neqne ( ¬ 𝑘 = 0 → 𝑘 ≠ 0 )
53 52 34 anim12ci ( ( ¬ 𝑘 = 0 ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 𝑘 ∈ ℕ0𝑘 ≠ 0 ) )
54 elnnne0 ( 𝑘 ∈ ℕ ↔ ( 𝑘 ∈ ℕ0𝑘 ≠ 0 ) )
55 53 54 sylibr ( ( ¬ 𝑘 = 0 ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝑘 ∈ ℕ )
56 fveqeq2 ( 𝑐 = 𝑘 → ( ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ↔ ( ( coe1𝐹 ) ‘ 𝑘 ) = 0 ) )
57 56 rspcv ( 𝑘 ∈ ℕ → ( ∀ 𝑐 ∈ ℕ ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 → ( ( coe1𝐹 ) ‘ 𝑘 ) = 0 ) )
58 55 57 syl ( ( ¬ 𝑘 = 0 ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ∀ 𝑐 ∈ ℕ ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 → ( ( coe1𝐹 ) ‘ 𝑘 ) = 0 ) )
59 oveq1 ( ( ( coe1𝐹 ) ‘ 𝑘 ) = 0 → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = ( 0 ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) )
60 simpll ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → 𝑅 ∈ Ring )
61 2 eleq2i ( 𝐺𝐵𝐺 ∈ ( Base ‘ 𝑃 ) )
62 61 biimpi ( 𝐺𝐵𝐺 ∈ ( Base ‘ 𝑃 ) )
63 62 adantl ( ( 𝐹𝐵𝐺𝐵 ) → 𝐺 ∈ ( Base ‘ 𝑃 ) )
64 63 adantl ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → 𝐺 ∈ ( Base ‘ 𝑃 ) )
65 fznn0sub ( 𝑘 ∈ ( 0 ... 𝑛 ) → ( 𝑛𝑘 ) ∈ ℕ0 )
66 eqid ( coe1𝐺 ) = ( coe1𝐺 )
67 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
68 66 67 1 38 coe1fvalcl ( ( 𝐺 ∈ ( Base ‘ 𝑃 ) ∧ ( 𝑛𝑘 ) ∈ ℕ0 ) → ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ∈ ( Base ‘ 𝑅 ) )
69 64 65 68 syl2an ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ∈ ( Base ‘ 𝑅 ) )
70 38 5 3 ringlz ( ( 𝑅 ∈ Ring ∧ ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( 0 ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 )
71 60 69 70 syl2anc ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( 0 ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 )
72 59 71 sylan9eqr ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) ∧ ( ( coe1𝐹 ) ‘ 𝑘 ) = 0 ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 )
73 72 ex ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) = 0 → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) )
74 73 ex ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( 𝑘 ∈ ( 0 ... 𝑛 ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) = 0 → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) )
75 74 com23 ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) = 0 → ( 𝑘 ∈ ( 0 ... 𝑛 ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) )
76 75 a1dd ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) = 0 → ( 𝑛 ∈ ℕ → ( 𝑘 ∈ ( 0 ... 𝑛 ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) ) )
77 76 com14 ( 𝑘 ∈ ( 0 ... 𝑛 ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) = 0 → ( 𝑛 ∈ ℕ → ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) ) )
78 77 adantl ( ( ¬ 𝑘 = 0 ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) = 0 → ( 𝑛 ∈ ℕ → ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) ) )
79 58 78 syld ( ( ¬ 𝑘 = 0 ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ∀ 𝑐 ∈ ℕ ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 → ( 𝑛 ∈ ℕ → ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) ) )
80 79 com24 ( ( ¬ 𝑘 = 0 ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( 𝑛 ∈ ℕ → ( ∀ 𝑐 ∈ ℕ ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) ) )
81 80 ex ( ¬ 𝑘 = 0 → ( 𝑘 ∈ ( 0 ... 𝑛 ) → ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( 𝑛 ∈ ℕ → ( ∀ 𝑐 ∈ ℕ ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) ) ) )
82 81 com14 ( 𝑛 ∈ ℕ → ( 𝑘 ∈ ( 0 ... 𝑛 ) → ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ¬ 𝑘 = 0 → ( ∀ 𝑐 ∈ ℕ ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) ) ) )
83 82 imp ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ¬ 𝑘 = 0 → ( ∀ 𝑐 ∈ ℕ ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) ) )
84 83 com14 ( ∀ 𝑐 ∈ ℕ ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 → ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ¬ 𝑘 = 0 → ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) ) )
85 84 adantr ( ( ∀ 𝑐 ∈ ℕ ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ∀ 𝑐 ∈ ℕ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) → ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ¬ 𝑘 = 0 → ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) ) )
86 85 com13 ( ¬ 𝑘 = 0 → ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ( ∀ 𝑐 ∈ ℕ ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ∀ 𝑐 ∈ ℕ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) → ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) ) )
87 51 86 pm2.61i ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ( ∀ 𝑐 ∈ ℕ ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ∀ 𝑐 ∈ ℕ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) → ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) )
88 20 87 syl5bi ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ∀ 𝑐 ∈ ℕ ( ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) → ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) ) )
89 88 imp ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ ∀ 𝑐 ∈ ℕ ( ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) ) → ( ( 𝑛 ∈ ℕ ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 ) )
90 89 impl ( ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ ∀ 𝑐 ∈ ℕ ( ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑘 ∈ ( 0 ... 𝑛 ) ) → ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) = 0 )
91 90 mpteq2dva ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ ∀ 𝑐 ∈ ℕ ( ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) ) = ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ 0 ) )
92 91 oveq2d ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ ∀ 𝑐 ∈ ℕ ( ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ ( ( ( coe1𝐹 ) ‘ 𝑘 ) ( .r𝑅 ) ( ( coe1𝐺 ) ‘ ( 𝑛𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ 0 ) ) )
93 ringmnd ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd )
94 ovexd ( 𝑅 ∈ Ring → ( 0 ... 𝑛 ) ∈ V )
95 3 gsumz ( ( 𝑅 ∈ Mnd ∧ ( 0 ... 𝑛 ) ∈ V ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ 0 ) ) = 0 )
96 93 94 95 syl2anc ( 𝑅 ∈ Ring → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ 0 ) ) = 0 )
97 96 adantr ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ 0 ) ) = 0 )
98 97 adantr ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ ∀ 𝑐 ∈ ℕ ( ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ 0 ) ) = 0 )
99 98 adantr ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ ∀ 𝑐 ∈ ℕ ( ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑛 ) ↦ 0 ) ) = 0 )
100 19 92 99 3eqtrd ( ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ ∀ 𝑐 ∈ ℕ ( ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) ) ∧ 𝑛 ∈ ℕ ) → ( ( coe1 ‘ ( 𝐹 × 𝐺 ) ) ‘ 𝑛 ) = 0 )
101 100 ralrimiva ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ ∀ 𝑐 ∈ ℕ ( ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) ) → ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝐹 × 𝐺 ) ) ‘ 𝑛 ) = 0 )
102 fveqeq2 ( 𝑐 = 𝑛 → ( ( ( coe1 ‘ ( 𝐹 × 𝐺 ) ) ‘ 𝑐 ) = 0 ↔ ( ( coe1 ‘ ( 𝐹 × 𝐺 ) ) ‘ 𝑛 ) = 0 ) )
103 102 cbvralvw ( ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝐹 × 𝐺 ) ) ‘ 𝑐 ) = 0 ↔ ∀ 𝑛 ∈ ℕ ( ( coe1 ‘ ( 𝐹 × 𝐺 ) ) ‘ 𝑛 ) = 0 )
104 101 103 sylibr ( ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) ∧ ∀ 𝑐 ∈ ℕ ( ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) ) → ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝐹 × 𝐺 ) ) ‘ 𝑐 ) = 0 )
105 104 ex ( ( 𝑅 ∈ Ring ∧ ( 𝐹𝐵𝐺𝐵 ) ) → ( ∀ 𝑐 ∈ ℕ ( ( ( coe1𝐹 ) ‘ 𝑐 ) = 0 ∧ ( ( coe1𝐺 ) ‘ 𝑐 ) = 0 ) → ∀ 𝑐 ∈ ℕ ( ( coe1 ‘ ( 𝐹 × 𝐺 ) ) ‘ 𝑐 ) = 0 ) )