| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cpm2mfval.i | ⊢ 𝐼  =  ( 𝑁  cPolyMatToMat  𝑅 ) | 
						
							| 2 |  | cpm2mfval.s | ⊢ 𝑆  =  ( 𝑁  ConstPolyMat  𝑅 ) | 
						
							| 3 |  | df-cpmat2mat | ⊢  cPolyMatToMat   =  ( 𝑛  ∈  Fin ,  𝑟  ∈  V  ↦  ( 𝑚  ∈  ( 𝑛  ConstPolyMat  𝑟 )  ↦  ( 𝑥  ∈  𝑛 ,  𝑦  ∈  𝑛  ↦  ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) ) ) ) | 
						
							| 4 | 3 | a1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →   cPolyMatToMat   =  ( 𝑛  ∈  Fin ,  𝑟  ∈  V  ↦  ( 𝑚  ∈  ( 𝑛  ConstPolyMat  𝑟 )  ↦  ( 𝑥  ∈  𝑛 ,  𝑦  ∈  𝑛  ↦  ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) ) ) ) ) | 
						
							| 5 |  | oveq12 | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑛  ConstPolyMat  𝑟 )  =  ( 𝑁  ConstPolyMat  𝑅 ) ) | 
						
							| 6 | 5 2 | eqtr4di | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑛  ConstPolyMat  𝑟 )  =  𝑆 ) | 
						
							| 7 |  | simpl | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  𝑛  =  𝑁 ) | 
						
							| 8 |  | eqidd | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 )  =  ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) ) | 
						
							| 9 | 7 7 8 | mpoeq123dv | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑥  ∈  𝑛 ,  𝑦  ∈  𝑛  ↦  ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) )  =  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) ) ) | 
						
							| 10 | 6 9 | mpteq12dv | ⊢ ( ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 )  →  ( 𝑚  ∈  ( 𝑛  ConstPolyMat  𝑟 )  ↦  ( 𝑥  ∈  𝑛 ,  𝑦  ∈  𝑛  ↦  ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) ) )  =  ( 𝑚  ∈  𝑆  ↦  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) ) ) ) | 
						
							| 11 | 10 | adantl | ⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  ∧  ( 𝑛  =  𝑁  ∧  𝑟  =  𝑅 ) )  →  ( 𝑚  ∈  ( 𝑛  ConstPolyMat  𝑟 )  ↦  ( 𝑥  ∈  𝑛 ,  𝑦  ∈  𝑛  ↦  ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) ) )  =  ( 𝑚  ∈  𝑆  ↦  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) ) ) ) | 
						
							| 12 |  | simpl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  𝑁  ∈  Fin ) | 
						
							| 13 |  | elex | ⊢ ( 𝑅  ∈  𝑉  →  𝑅  ∈  V ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  𝑅  ∈  V ) | 
						
							| 15 | 2 | ovexi | ⊢ 𝑆  ∈  V | 
						
							| 16 |  | mptexg | ⊢ ( 𝑆  ∈  V  →  ( 𝑚  ∈  𝑆  ↦  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) ) )  ∈  V ) | 
						
							| 17 | 15 16 | mp1i | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  ( 𝑚  ∈  𝑆  ↦  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) ) )  ∈  V ) | 
						
							| 18 | 4 11 12 14 17 | ovmpod | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  ( 𝑁  cPolyMatToMat  𝑅 )  =  ( 𝑚  ∈  𝑆  ↦  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) ) ) ) | 
						
							| 19 | 1 18 | eqtrid | ⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  𝑉 )  →  𝐼  =  ( 𝑚  ∈  𝑆  ↦  ( 𝑥  ∈  𝑁 ,  𝑦  ∈  𝑁  ↦  ( ( coe1 ‘ ( 𝑥 𝑚 𝑦 ) ) ‘ 0 ) ) ) ) |