| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cpmadugsum.a | 
							⊢ 𝐴  =  ( 𝑁  Mat  𝑅 )  | 
						
						
							| 2 | 
							
								
							 | 
							cpmadugsum.b | 
							⊢ 𝐵  =  ( Base ‘ 𝐴 )  | 
						
						
							| 3 | 
							
								
							 | 
							cpmadugsum.p | 
							⊢ 𝑃  =  ( Poly1 ‘ 𝑅 )  | 
						
						
							| 4 | 
							
								
							 | 
							cpmadugsum.y | 
							⊢ 𝑌  =  ( 𝑁  Mat  𝑃 )  | 
						
						
							| 5 | 
							
								
							 | 
							cpmadugsum.t | 
							⊢ 𝑇  =  ( 𝑁  matToPolyMat  𝑅 )  | 
						
						
							| 6 | 
							
								
							 | 
							cpmadugsum.x | 
							⊢ 𝑋  =  ( var1 ‘ 𝑅 )  | 
						
						
							| 7 | 
							
								
							 | 
							cpmadugsum.e | 
							⊢  ↑   =  ( .g ‘ ( mulGrp ‘ 𝑃 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cpmadugsum.m | 
							⊢  ·   =  (  ·𝑠  ‘ 𝑌 )  | 
						
						
							| 9 | 
							
								
							 | 
							cpmadugsum.r | 
							⊢  ×   =  ( .r ‘ 𝑌 )  | 
						
						
							| 10 | 
							
								
							 | 
							cpmadugsum.1 | 
							⊢  1   =  ( 1r ‘ 𝑌 )  | 
						
						
							| 11 | 
							
								
							 | 
							cpmadugsum.g | 
							⊢  +   =  ( +g ‘ 𝑌 )  | 
						
						
							| 12 | 
							
								
							 | 
							cpmadugsum.s | 
							⊢  −   =  ( -g ‘ 𝑌 )  | 
						
						
							| 13 | 
							
								
							 | 
							cpmadugsum.i | 
							⊢ 𝐼  =  ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) )  | 
						
						
							| 14 | 
							
								
							 | 
							cpmadugsum.j | 
							⊢ 𝐽  =  ( 𝑁  maAdju  𝑃 )  | 
						
						
							| 15 | 
							
								
							 | 
							oveq2 | 
							⊢ ( ( 𝐽 ‘ 𝐼 )  =  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) )  →  ( 𝐼  ×  ( 𝐽 ‘ 𝐼 ) )  =  ( 𝐼  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) )  | 
						
						
							| 16 | 
							
								13
							 | 
							a1i | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝐼  =  ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							oveq1d | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝐼  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  =  ( ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑌 )  =  ( Base ‘ 𝑌 )  | 
						
						
							| 19 | 
							
								
							 | 
							crngring | 
							⊢ ( 𝑅  ∈  CRing  →  𝑅  ∈  Ring )  | 
						
						
							| 20 | 
							
								19
							 | 
							anim2i | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							3adant3 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) )  | 
						
						
							| 23 | 
							
								3 4
							 | 
							pmatring | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑌  ∈  Ring )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							syl | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑌  ∈  Ring )  | 
						
						
							| 25 | 
							
								3 4
							 | 
							pmatlmod | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  →  𝑌  ∈  LMod )  | 
						
						
							| 26 | 
							
								19 25
							 | 
							sylan2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  LMod )  | 
						
						
							| 27 | 
							
								19
							 | 
							adantl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑅  ∈  Ring )  | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝑃 )  =  ( Base ‘ 𝑃 )  | 
						
						
							| 29 | 
							
								6 3 28
							 | 
							vr1cl | 
							⊢ ( 𝑅  ∈  Ring  →  𝑋  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 30 | 
							
								27 29
							 | 
							syl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑋  ∈  ( Base ‘ 𝑃 ) )  | 
						
						
							| 31 | 
							
								3
							 | 
							ply1crng | 
							⊢ ( 𝑅  ∈  CRing  →  𝑃  ∈  CRing )  | 
						
						
							| 32 | 
							
								4
							 | 
							matsca2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑃  ∈  CRing )  →  𝑃  =  ( Scalar ‘ 𝑌 ) )  | 
						
						
							| 33 | 
							
								31 32
							 | 
							sylan2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑃  =  ( Scalar ‘ 𝑌 ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							fveq2d | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( Base ‘ 𝑃 )  =  ( Base ‘ ( Scalar ‘ 𝑌 ) ) )  | 
						
						
							| 35 | 
							
								30 34
							 | 
							eleqtrd | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) ) )  | 
						
						
							| 36 | 
							
								19 23
							 | 
							sylan2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  Ring )  | 
						
						
							| 37 | 
							
								18 10
							 | 
							ringidcl | 
							⊢ ( 𝑌  ∈  Ring  →   1   ∈  ( Base ‘ 𝑌 ) )  | 
						
						
							| 38 | 
							
								36 37
							 | 
							syl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →   1   ∈  ( Base ‘ 𝑌 ) )  | 
						
						
							| 39 | 
							
								
							 | 
							eqid | 
							⊢ ( Scalar ‘ 𝑌 )  =  ( Scalar ‘ 𝑌 )  | 
						
						
							| 40 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ ( Scalar ‘ 𝑌 ) )  =  ( Base ‘ ( Scalar ‘ 𝑌 ) )  | 
						
						
							| 41 | 
							
								18 39 8 40
							 | 
							lmodvscl | 
							⊢ ( ( 𝑌  ∈  LMod  ∧  𝑋  ∈  ( Base ‘ ( Scalar ‘ 𝑌 ) )  ∧   1   ∈  ( Base ‘ 𝑌 ) )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑌 ) )  | 
						
						
							| 42 | 
							
								26 35 38 41
							 | 
							syl3anc | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑌 ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							3adant3 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑌 ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑋  ·   1  )  ∈  ( Base ‘ 𝑌 ) )  | 
						
						
							| 45 | 
							
								5 1 2 3 4
							 | 
							mat2pmatbas | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) )  | 
						
						
							| 46 | 
							
								19 45
							 | 
							syl3an2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑇 ‘ 𝑀 )  ∈  ( Base ‘ 𝑌 ) )  | 
						
						
							| 48 | 
							
								
							 | 
							ringcmn | 
							⊢ ( 𝑌  ∈  Ring  →  𝑌  ∈  CMnd )  | 
						
						
							| 49 | 
							
								36 48
							 | 
							syl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing )  →  𝑌  ∈  CMnd )  | 
						
						
							| 50 | 
							
								49
							 | 
							3adant3 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝑌  ∈  CMnd )  | 
						
						
							| 51 | 
							
								50
							 | 
							ad2antrr | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  𝑌  ∈  CMnd )  | 
						
						
							| 52 | 
							
								
							 | 
							fzfid | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 0 ... 𝑠 )  ∈  Fin )  | 
						
						
							| 53 | 
							
								21
							 | 
							ad3antrrr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ( 0 ... 𝑠 ) )  →  ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring ) )  | 
						
						
							| 54 | 
							
								
							 | 
							elmapi | 
							⊢ ( 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) )  →  𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵 )  | 
						
						
							| 55 | 
							
								
							 | 
							ffvelcdm | 
							⊢ ( ( 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵  ∧  𝑛  ∈  ( 0 ... 𝑠 ) )  →  ( 𝑏 ‘ 𝑛 )  ∈  𝐵 )  | 
						
						
							| 56 | 
							
								55
							 | 
							ex | 
							⊢ ( 𝑏 : ( 0 ... 𝑠 ) ⟶ 𝐵  →  ( 𝑛  ∈  ( 0 ... 𝑠 )  →  ( 𝑏 ‘ 𝑛 )  ∈  𝐵 ) )  | 
						
						
							| 57 | 
							
								54 56
							 | 
							syl | 
							⊢ ( 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) )  →  ( 𝑛  ∈  ( 0 ... 𝑠 )  →  ( 𝑏 ‘ 𝑛 )  ∈  𝐵 ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							adantl | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑛  ∈  ( 0 ... 𝑠 )  →  ( 𝑏 ‘ 𝑛 )  ∈  𝐵 ) )  | 
						
						
							| 59 | 
							
								58
							 | 
							imp | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ( 0 ... 𝑠 ) )  →  ( 𝑏 ‘ 𝑛 )  ∈  𝐵 )  | 
						
						
							| 60 | 
							
								
							 | 
							elfznn0 | 
							⊢ ( 𝑛  ∈  ( 0 ... 𝑠 )  →  𝑛  ∈  ℕ0 )  | 
						
						
							| 61 | 
							
								60
							 | 
							adantl | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ( 0 ... 𝑠 ) )  →  𝑛  ∈  ℕ0 )  | 
						
						
							| 62 | 
							
								1 2 5 3 4 18 8 7 6
							 | 
							mat2pmatscmxcl | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring )  ∧  ( ( 𝑏 ‘ 𝑛 )  ∈  𝐵  ∧  𝑛  ∈  ℕ0 ) )  →  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) )  ∈  ( Base ‘ 𝑌 ) )  | 
						
						
							| 63 | 
							
								53 59 61 62
							 | 
							syl12anc | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  𝑛  ∈  ( 0 ... 𝑠 ) )  →  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) )  ∈  ( Base ‘ 𝑌 ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							ralrimiva | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ∀ 𝑛  ∈  ( 0 ... 𝑠 ) ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) )  ∈  ( Base ‘ 𝑌 ) )  | 
						
						
							| 65 | 
							
								18 51 52 64
							 | 
							gsummptcl | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) )  ∈  ( Base ‘ 𝑌 ) )  | 
						
						
							| 66 | 
							
								18 9 12 24 44 47 65
							 | 
							ringsubdir | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ( ( 𝑋  ·   1  )  −  ( 𝑇 ‘ 𝑀 ) )  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  =  ( ( ( 𝑋  ·   1  )  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) )  | 
						
						
							| 67 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝑛  =  𝑖  →  ( 𝑛  ↑  𝑋 )  =  ( 𝑖  ↑  𝑋 ) )  | 
						
						
							| 68 | 
							
								
							 | 
							2fveq3 | 
							⊢ ( 𝑛  =  𝑖  →  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) )  =  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) )  | 
						
						
							| 69 | 
							
								67 68
							 | 
							oveq12d | 
							⊢ ( 𝑛  =  𝑖  →  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) )  =  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) )  | 
						
						
							| 70 | 
							
								69
							 | 
							cbvmptv | 
							⊢ ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) )  =  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) )  | 
						
						
							| 71 | 
							
								70
							 | 
							oveq2i | 
							⊢ ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) )  =  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							oveq2i | 
							⊢ ( ( 𝑋  ·   1  )  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  =  ( ( 𝑋  ·   1  )  ×  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) )  | 
						
						
							| 73 | 
							
								71
							 | 
							oveq2i | 
							⊢ ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  =  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) )  | 
						
						
							| 74 | 
							
								72 73
							 | 
							oveq12i | 
							⊢ ( ( ( 𝑋  ·   1  )  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) )  =  ( ( ( 𝑋  ·   1  )  ×  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  | 
						
						
							| 75 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12
							 | 
							cpmadugsumlemF | 
							⊢ ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  ( 𝑠  ∈  ℕ  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ) )  →  ( ( ( 𝑋  ·   1  )  ×  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							anassrs | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ( ( 𝑋  ·   1  )  ×  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑌  Σg  ( 𝑖  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) )  | 
						
						
							| 77 | 
							
								74 76
							 | 
							eqtrid | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( ( ( 𝑋  ·   1  )  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) )  | 
						
						
							| 78 | 
							
								17 66 77
							 | 
							3eqtrd | 
							⊢ ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  →  ( 𝐼  ×  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) )  | 
						
						
							| 79 | 
							
								15 78
							 | 
							sylan9eqr | 
							⊢ ( ( ( ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  ∧  𝑠  ∈  ℕ )  ∧  𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) )  ∧  ( 𝐽 ‘ 𝐼 )  =  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  →  ( 𝐼  ×  ( 𝐽 ‘ 𝐼 ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) )  | 
						
						
							| 80 | 
							
								4 14 18
							 | 
							maduf | 
							⊢ ( 𝑃  ∈  CRing  →  𝐽 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑌 ) )  | 
						
						
							| 81 | 
							
								31 80
							 | 
							syl | 
							⊢ ( 𝑅  ∈  CRing  →  𝐽 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑌 ) )  | 
						
						
							| 82 | 
							
								81
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐽 : ( Base ‘ 𝑌 ) ⟶ ( Base ‘ 𝑌 ) )  | 
						
						
							| 83 | 
							
								1 2 3 4 6 5 12 8 10 13
							 | 
							chmatcl | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  Ring  ∧  𝑀  ∈  𝐵 )  →  𝐼  ∈  ( Base ‘ 𝑌 ) )  | 
						
						
							| 84 | 
							
								19 83
							 | 
							syl3an2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  𝐼  ∈  ( Base ‘ 𝑌 ) )  | 
						
						
							| 85 | 
							
								82 84
							 | 
							ffvelcdmd | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ( 𝐽 ‘ 𝐼 )  ∈  ( Base ‘ 𝑌 ) )  | 
						
						
							| 86 | 
							
								3 4 18 8 7 6 5 1 2
							 | 
							pmatcollpw3fi1 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  ( 𝐽 ‘ 𝐼 )  ∈  ( Base ‘ 𝑌 ) )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐽 ‘ 𝐼 )  =  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  | 
						
						
							| 87 | 
							
								85 86
							 | 
							syld3an3 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐽 ‘ 𝐼 )  =  ( 𝑌  Σg  ( 𝑛  ∈  ( 0 ... 𝑠 )  ↦  ( ( 𝑛  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) )  | 
						
						
							| 88 | 
							
								79 87
							 | 
							reximddv2 | 
							⊢ ( ( 𝑁  ∈  Fin  ∧  𝑅  ∈  CRing  ∧  𝑀  ∈  𝐵 )  →  ∃ 𝑠  ∈  ℕ ∃ 𝑏  ∈  ( 𝐵  ↑m  ( 0 ... 𝑠 ) ) ( 𝐼  ×  ( 𝐽 ‘ 𝐼 ) )  =  ( ( 𝑌  Σg  ( 𝑖  ∈  ( 1 ... 𝑠 )  ↦  ( ( 𝑖  ↑  𝑋 )  ·  ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑖  −  1 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) )  +  ( ( ( ( 𝑠  +  1 )  ↑  𝑋 )  ·  ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) )  −  ( ( 𝑇 ‘ 𝑀 )  ×  ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) ) )  |