| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cpmadugsum.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
cpmadugsum.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
cpmadugsum.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 4 |
|
cpmadugsum.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
| 5 |
|
cpmadugsum.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
| 6 |
|
cpmadugsum.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 7 |
|
cpmadugsum.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 8 |
|
cpmadugsum.m |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
| 9 |
|
cpmadugsum.r |
⊢ × = ( .r ‘ 𝑌 ) |
| 10 |
|
cpmadugsum.1 |
⊢ 1 = ( 1r ‘ 𝑌 ) |
| 11 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 12 |
3
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 13 |
11 12
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ Ring ) |
| 14 |
13
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑃 ∈ Ring ) |
| 15 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 16 |
15
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 17 |
14 16
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 18 |
17
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 19 |
|
elfznn0 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑠 ) → 𝑖 ∈ ℕ0 ) |
| 20 |
19
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑖 ∈ ℕ0 ) |
| 21 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
| 22 |
21
|
a1i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 1 ∈ ℕ0 ) |
| 23 |
11
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
| 24 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 25 |
6 3 24
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 26 |
23 25
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 27 |
26
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 28 |
15 24
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
| 29 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
| 30 |
15 29
|
mgpplusg |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 31 |
28 7 30
|
mulgnn0dir |
⊢ ( ( ( mulGrp ‘ 𝑃 ) ∈ Mnd ∧ ( 𝑖 ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑖 + 1 ) ↑ 𝑋 ) = ( ( 𝑖 ↑ 𝑋 ) ( .r ‘ 𝑃 ) ( 1 ↑ 𝑋 ) ) ) |
| 32 |
18 20 22 27 31
|
syl13anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑖 + 1 ) ↑ 𝑋 ) = ( ( 𝑖 ↑ 𝑋 ) ( .r ‘ 𝑃 ) ( 1 ↑ 𝑋 ) ) ) |
| 33 |
3
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
| 34 |
33
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) ) |
| 35 |
34
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) ) |
| 36 |
4
|
matsca2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → 𝑃 = ( Scalar ‘ 𝑌 ) ) |
| 37 |
35 36
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑃 = ( Scalar ‘ 𝑌 ) ) |
| 38 |
37
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑃 = ( Scalar ‘ 𝑌 ) ) |
| 39 |
38
|
fveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( .r ‘ 𝑃 ) = ( .r ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 40 |
|
eqidd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑖 ↑ 𝑋 ) = ( 𝑖 ↑ 𝑋 ) ) |
| 41 |
28 7
|
mulg1 |
⊢ ( 𝑋 ∈ ( Base ‘ 𝑃 ) → ( 1 ↑ 𝑋 ) = 𝑋 ) |
| 42 |
26 41
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 1 ↑ 𝑋 ) = 𝑋 ) |
| 43 |
42
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 1 ↑ 𝑋 ) = 𝑋 ) |
| 44 |
39 40 43
|
oveq123d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑖 ↑ 𝑋 ) ( .r ‘ 𝑃 ) ( 1 ↑ 𝑋 ) ) = ( ( 𝑖 ↑ 𝑋 ) ( .r ‘ ( Scalar ‘ 𝑌 ) ) 𝑋 ) ) |
| 45 |
32 44
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑖 + 1 ) ↑ 𝑋 ) = ( ( 𝑖 ↑ 𝑋 ) ( .r ‘ ( Scalar ‘ 𝑌 ) ) 𝑋 ) ) |
| 46 |
13
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) ) |
| 47 |
46
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) ) |
| 48 |
4
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → 𝑌 ∈ Ring ) |
| 49 |
47 48
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ Ring ) |
| 50 |
49
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑌 ∈ Ring ) |
| 51 |
|
simpll1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑁 ∈ Fin ) |
| 52 |
23
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑅 ∈ Ring ) |
| 53 |
|
simplrl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑠 ∈ ℕ0 ) |
| 54 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) |
| 55 |
54
|
anim1i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) ) |
| 56 |
1 2 3 4 5
|
m2pmfzmap |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) ) → ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 57 |
51 52 53 55 56
|
syl31anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 58 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
| 59 |
58 9 10
|
ringlidm |
⊢ ( ( 𝑌 ∈ Ring ∧ ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) → ( 1 × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) = ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) |
| 60 |
50 57 59
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 1 × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) = ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) |
| 61 |
60
|
eqcomd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) = ( 1 × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) |
| 62 |
45 61
|
oveq12d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( ( 𝑖 + 1 ) ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) = ( ( ( 𝑖 ↑ 𝑋 ) ( .r ‘ ( Scalar ‘ 𝑌 ) ) 𝑋 ) · ( 1 × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
| 63 |
4
|
matassa |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → 𝑌 ∈ AssAlg ) |
| 64 |
34 63
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ AssAlg ) |
| 65 |
64
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ AssAlg ) |
| 66 |
65
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑌 ∈ AssAlg ) |
| 67 |
37
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( Scalar ‘ 𝑌 ) = 𝑃 ) |
| 68 |
67
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ 𝑃 ) ) |
| 69 |
26 68
|
eleqtrrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 70 |
69
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 71 |
28 7 18 20 27
|
mulgnn0cld |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑖 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 72 |
68
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ 𝑃 ) ) |
| 73 |
71 72
|
eleqtrrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑖 ↑ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 74 |
46 48
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ Ring ) |
| 75 |
74
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ Ring ) |
| 76 |
58 10
|
ringidcl |
⊢ ( 𝑌 ∈ Ring → 1 ∈ ( Base ‘ 𝑌 ) ) |
| 77 |
75 76
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 1 ∈ ( Base ‘ 𝑌 ) ) |
| 78 |
77
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 1 ∈ ( Base ‘ 𝑌 ) ) |
| 79 |
|
eqid |
⊢ ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 ) |
| 80 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) |
| 81 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑌 ) ) = ( .r ‘ ( Scalar ‘ 𝑌 ) ) |
| 82 |
58 79 80 81 8 9
|
assa2ass |
⊢ ( ( 𝑌 ∈ AssAlg ∧ ( 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ ( 𝑖 ↑ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) ∧ ( 1 ∈ ( Base ‘ 𝑌 ) ∧ ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑋 · 1 ) × ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) = ( ( ( 𝑖 ↑ 𝑋 ) ( .r ‘ ( Scalar ‘ 𝑌 ) ) 𝑋 ) · ( 1 × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
| 83 |
66 70 73 78 57 82
|
syl122anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑋 · 1 ) × ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) = ( ( ( 𝑖 ↑ 𝑋 ) ( .r ‘ ( Scalar ‘ 𝑌 ) ) 𝑋 ) · ( 1 × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
| 84 |
83
|
eqcomd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( ( 𝑖 ↑ 𝑋 ) ( .r ‘ ( Scalar ‘ 𝑌 ) ) 𝑋 ) · ( 1 × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) = ( ( 𝑋 · 1 ) × ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
| 85 |
62 84
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( ( 𝑖 + 1 ) ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) = ( ( 𝑋 · 1 ) × ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
| 86 |
85
|
mpteq2dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( ( 𝑖 + 1 ) ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑋 · 1 ) × ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) |
| 87 |
86
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( ( 𝑖 + 1 ) ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑋 · 1 ) × ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) |
| 88 |
|
eqid |
⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) |
| 89 |
75
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑌 ∈ Ring ) |
| 90 |
|
ovexd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 0 ... 𝑠 ) ∈ V ) |
| 91 |
4
|
matlmod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → 𝑌 ∈ LMod ) |
| 92 |
46 91
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ LMod ) |
| 93 |
92
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ LMod ) |
| 94 |
11
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring ) |
| 95 |
94 25
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 96 |
34 36
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 = ( Scalar ‘ 𝑌 ) ) |
| 97 |
96
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( Scalar ‘ 𝑌 ) = 𝑃 ) |
| 98 |
97
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ 𝑃 ) ) |
| 99 |
95 98
|
eleqtrrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 100 |
99
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 101 |
49 76
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 1 ∈ ( Base ‘ 𝑌 ) ) |
| 102 |
58 79 8 80
|
lmodvscl |
⊢ ( ( 𝑌 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 1 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) ) |
| 103 |
93 100 101 102
|
syl3anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) ) |
| 104 |
103
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) ) |
| 105 |
93
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑌 ∈ LMod ) |
| 106 |
36
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → ( Scalar ‘ 𝑌 ) = 𝑃 ) |
| 107 |
106
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ 𝑃 ) ) |
| 108 |
35 107
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ 𝑃 ) ) |
| 109 |
108
|
eleq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑖 ↑ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ↔ ( 𝑖 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) ) |
| 110 |
109
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑖 ↑ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ↔ ( 𝑖 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) ) |
| 111 |
71 110
|
mpbird |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑖 ↑ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
| 112 |
58 79 8 80
|
lmodvscl |
⊢ ( ( 𝑌 ∈ LMod ∧ ( 𝑖 ↑ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 113 |
105 111 57 112
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
| 114 |
|
simpl1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑁 ∈ Fin ) |
| 115 |
23
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑅 ∈ Ring ) |
| 116 |
|
simprl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑠 ∈ ℕ0 ) |
| 117 |
|
eqid |
⊢ ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) |
| 118 |
|
fzfid |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 0 ... 𝑠 ) ∈ Fin ) |
| 119 |
|
ovexd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ∈ V ) |
| 120 |
|
fvexd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 0g ‘ 𝑌 ) ∈ V ) |
| 121 |
117 118 119 120
|
fsuppmptdm |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) finSupp ( 0g ‘ 𝑌 ) ) |
| 122 |
114 115 116 54 121
|
syl31anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) finSupp ( 0g ‘ 𝑌 ) ) |
| 123 |
58 88 9 89 90 104 113 122
|
gsummulc2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑋 · 1 ) × ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) = ( ( 𝑋 · 1 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) |
| 124 |
87 123
|
eqtr2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝑋 · 1 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( ( 𝑖 + 1 ) ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) |