Step |
Hyp |
Ref |
Expression |
1 |
|
cpmadugsum.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
cpmadugsum.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
cpmadugsum.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
cpmadugsum.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
5 |
|
cpmadugsum.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
6 |
|
cpmadugsum.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
7 |
|
cpmadugsum.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
8 |
|
cpmadugsum.m |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
9 |
|
cpmadugsum.r |
⊢ × = ( .r ‘ 𝑌 ) |
10 |
|
cpmadugsum.1 |
⊢ 1 = ( 1r ‘ 𝑌 ) |
11 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
12 |
3
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
13 |
11 12
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ Ring ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑃 ∈ Ring ) |
15 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
16 |
15
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
17 |
14 16
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
18 |
17
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
19 |
|
elfznn0 |
⊢ ( 𝑖 ∈ ( 0 ... 𝑠 ) → 𝑖 ∈ ℕ0 ) |
20 |
19
|
adantl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑖 ∈ ℕ0 ) |
21 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
22 |
21
|
a1i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 1 ∈ ℕ0 ) |
23 |
11
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
24 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
25 |
6 3 24
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
26 |
23 25
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
27 |
26
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
28 |
15 24
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
29 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
30 |
15 29
|
mgpplusg |
⊢ ( .r ‘ 𝑃 ) = ( +g ‘ ( mulGrp ‘ 𝑃 ) ) |
31 |
28 7 30
|
mulgnn0dir |
⊢ ( ( ( mulGrp ‘ 𝑃 ) ∈ Mnd ∧ ( 𝑖 ∈ ℕ0 ∧ 1 ∈ ℕ0 ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ) ) → ( ( 𝑖 + 1 ) ↑ 𝑋 ) = ( ( 𝑖 ↑ 𝑋 ) ( .r ‘ 𝑃 ) ( 1 ↑ 𝑋 ) ) ) |
32 |
18 20 22 27 31
|
syl13anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑖 + 1 ) ↑ 𝑋 ) = ( ( 𝑖 ↑ 𝑋 ) ( .r ‘ 𝑃 ) ( 1 ↑ 𝑋 ) ) ) |
33 |
3
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
34 |
33
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) ) |
35 |
34
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) ) |
36 |
4
|
matsca2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → 𝑃 = ( Scalar ‘ 𝑌 ) ) |
37 |
35 36
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑃 = ( Scalar ‘ 𝑌 ) ) |
38 |
37
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑃 = ( Scalar ‘ 𝑌 ) ) |
39 |
38
|
fveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( .r ‘ 𝑃 ) = ( .r ‘ ( Scalar ‘ 𝑌 ) ) ) |
40 |
|
eqidd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑖 ↑ 𝑋 ) = ( 𝑖 ↑ 𝑋 ) ) |
41 |
28 7
|
mulg1 |
⊢ ( 𝑋 ∈ ( Base ‘ 𝑃 ) → ( 1 ↑ 𝑋 ) = 𝑋 ) |
42 |
26 41
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 1 ↑ 𝑋 ) = 𝑋 ) |
43 |
42
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 1 ↑ 𝑋 ) = 𝑋 ) |
44 |
39 40 43
|
oveq123d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑖 ↑ 𝑋 ) ( .r ‘ 𝑃 ) ( 1 ↑ 𝑋 ) ) = ( ( 𝑖 ↑ 𝑋 ) ( .r ‘ ( Scalar ‘ 𝑌 ) ) 𝑋 ) ) |
45 |
32 44
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑖 + 1 ) ↑ 𝑋 ) = ( ( 𝑖 ↑ 𝑋 ) ( .r ‘ ( Scalar ‘ 𝑌 ) ) 𝑋 ) ) |
46 |
13
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) ) |
47 |
46
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) ) |
48 |
4
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → 𝑌 ∈ Ring ) |
49 |
47 48
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ Ring ) |
50 |
49
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑌 ∈ Ring ) |
51 |
|
simpll1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑁 ∈ Fin ) |
52 |
23
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑅 ∈ Ring ) |
53 |
|
simplrl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑠 ∈ ℕ0 ) |
54 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) |
55 |
54
|
anim1i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) ) |
56 |
1 2 3 4 5
|
m2pmfzmap |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) ) → ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) |
57 |
51 52 53 55 56
|
syl31anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) |
58 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
59 |
58 9 10
|
ringlidm |
⊢ ( ( 𝑌 ∈ Ring ∧ ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) → ( 1 × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) = ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) |
60 |
50 57 59
|
syl2anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 1 × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) = ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) |
61 |
60
|
eqcomd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) = ( 1 × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) |
62 |
45 61
|
oveq12d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( ( 𝑖 + 1 ) ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) = ( ( ( 𝑖 ↑ 𝑋 ) ( .r ‘ ( Scalar ‘ 𝑌 ) ) 𝑋 ) · ( 1 × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
63 |
4
|
matassa |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → 𝑌 ∈ AssAlg ) |
64 |
34 63
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ AssAlg ) |
65 |
64
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ AssAlg ) |
66 |
65
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑌 ∈ AssAlg ) |
67 |
37
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( Scalar ‘ 𝑌 ) = 𝑃 ) |
68 |
67
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ 𝑃 ) ) |
69 |
26 68
|
eleqtrrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
70 |
69
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
71 |
28 7
|
mulgnn0cl |
⊢ ( ( ( mulGrp ‘ 𝑃 ) ∈ Mnd ∧ 𝑖 ∈ ℕ0 ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑖 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
72 |
18 20 27 71
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑖 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
73 |
68
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ 𝑃 ) ) |
74 |
72 73
|
eleqtrrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑖 ↑ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
75 |
46 48
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ Ring ) |
76 |
75
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ Ring ) |
77 |
58 10
|
ringidcl |
⊢ ( 𝑌 ∈ Ring → 1 ∈ ( Base ‘ 𝑌 ) ) |
78 |
76 77
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 1 ∈ ( Base ‘ 𝑌 ) ) |
79 |
78
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 1 ∈ ( Base ‘ 𝑌 ) ) |
80 |
|
eqid |
⊢ ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 ) |
81 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) |
82 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝑌 ) ) = ( .r ‘ ( Scalar ‘ 𝑌 ) ) |
83 |
58 80 81 82 8 9
|
assa2ass |
⊢ ( ( 𝑌 ∈ AssAlg ∧ ( 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ ( 𝑖 ↑ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) ∧ ( 1 ∈ ( Base ‘ 𝑌 ) ∧ ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑋 · 1 ) × ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) = ( ( ( 𝑖 ↑ 𝑋 ) ( .r ‘ ( Scalar ‘ 𝑌 ) ) 𝑋 ) · ( 1 × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
84 |
66 70 74 79 57 83
|
syl122anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑋 · 1 ) × ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) = ( ( ( 𝑖 ↑ 𝑋 ) ( .r ‘ ( Scalar ‘ 𝑌 ) ) 𝑋 ) · ( 1 × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
85 |
84
|
eqcomd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( ( 𝑖 ↑ 𝑋 ) ( .r ‘ ( Scalar ‘ 𝑌 ) ) 𝑋 ) · ( 1 × ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) = ( ( 𝑋 · 1 ) × ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
86 |
62 85
|
eqtrd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( ( 𝑖 + 1 ) ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) = ( ( 𝑋 · 1 ) × ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) |
87 |
86
|
mpteq2dva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( ( 𝑖 + 1 ) ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑋 · 1 ) × ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) |
88 |
87
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( ( 𝑖 + 1 ) ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑋 · 1 ) × ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) |
89 |
|
eqid |
⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) |
90 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
91 |
76
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑌 ∈ Ring ) |
92 |
|
ovexd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 0 ... 𝑠 ) ∈ V ) |
93 |
4
|
matlmod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → 𝑌 ∈ LMod ) |
94 |
46 93
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ LMod ) |
95 |
94
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ LMod ) |
96 |
11
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring ) |
97 |
96 25
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
98 |
34 36
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 = ( Scalar ‘ 𝑌 ) ) |
99 |
98
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( Scalar ‘ 𝑌 ) = 𝑃 ) |
100 |
99
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ 𝑃 ) ) |
101 |
97 100
|
eleqtrrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
102 |
101
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
103 |
49 77
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 1 ∈ ( Base ‘ 𝑌 ) ) |
104 |
58 80 8 81
|
lmodvscl |
⊢ ( ( 𝑌 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 1 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) ) |
105 |
95 102 103 104
|
syl3anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) ) |
106 |
105
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) ) |
107 |
95
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑌 ∈ LMod ) |
108 |
36
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → ( Scalar ‘ 𝑌 ) = 𝑃 ) |
109 |
108
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ 𝑃 ) ) |
110 |
35 109
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ 𝑃 ) ) |
111 |
110
|
eleq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑖 ↑ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ↔ ( 𝑖 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) ) |
112 |
111
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑖 ↑ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ↔ ( 𝑖 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) ) |
113 |
72 112
|
mpbird |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑖 ↑ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
114 |
58 80 8 81
|
lmodvscl |
⊢ ( ( 𝑌 ∈ LMod ∧ ( 𝑖 ↑ 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
115 |
107 113 57 114
|
syl3anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ∈ ( Base ‘ 𝑌 ) ) |
116 |
|
simpl1 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑁 ∈ Fin ) |
117 |
23
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑅 ∈ Ring ) |
118 |
|
simprl |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝑠 ∈ ℕ0 ) |
119 |
|
eqid |
⊢ ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) |
120 |
|
fzfid |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 0 ... 𝑠 ) ∈ Fin ) |
121 |
|
ovexd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ∈ V ) |
122 |
|
fvexd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 0g ‘ 𝑌 ) ∈ V ) |
123 |
119 120 121 122
|
fsuppmptdm |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) finSupp ( 0g ‘ 𝑌 ) ) |
124 |
116 117 118 54 123
|
syl31anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) finSupp ( 0g ‘ 𝑌 ) ) |
125 |
58 89 90 9 91 92 106 115 124
|
gsummulc2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑋 · 1 ) × ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) = ( ( 𝑋 · 1 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) ) |
126 |
88 125
|
eqtr2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝑋 · 1 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( ( 𝑖 + 1 ) ↑ 𝑋 ) · ( 𝑇 ‘ ( 𝑏 ‘ 𝑖 ) ) ) ) ) ) |