Metamath Proof Explorer


Theorem cpmadugsumlemC

Description: Lemma C for cpmadugsum . (Contributed by AV, 2-Nov-2019)

Ref Expression
Hypotheses cpmadugsum.a 𝐴 = ( 𝑁 Mat 𝑅 )
cpmadugsum.b 𝐵 = ( Base ‘ 𝐴 )
cpmadugsum.p 𝑃 = ( Poly1𝑅 )
cpmadugsum.y 𝑌 = ( 𝑁 Mat 𝑃 )
cpmadugsum.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
cpmadugsum.x 𝑋 = ( var1𝑅 )
cpmadugsum.e = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
cpmadugsum.m · = ( ·𝑠𝑌 )
cpmadugsum.r × = ( .r𝑌 )
cpmadugsum.1 1 = ( 1r𝑌 )
Assertion cpmadugsumlemC ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝑇𝑀 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cpmadugsum.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 cpmadugsum.b 𝐵 = ( Base ‘ 𝐴 )
3 cpmadugsum.p 𝑃 = ( Poly1𝑅 )
4 cpmadugsum.y 𝑌 = ( 𝑁 Mat 𝑃 )
5 cpmadugsum.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
6 cpmadugsum.x 𝑋 = ( var1𝑅 )
7 cpmadugsum.e = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
8 cpmadugsum.m · = ( ·𝑠𝑌 )
9 cpmadugsum.r × = ( .r𝑌 )
10 cpmadugsum.1 1 = ( 1r𝑌 )
11 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
12 eqid ( 0g𝑌 ) = ( 0g𝑌 )
13 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
14 3 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
15 13 14 syl ( 𝑅 ∈ CRing → 𝑃 ∈ Ring )
16 15 anim2i ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) )
17 4 matring ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → 𝑌 ∈ Ring )
18 16 17 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ Ring )
19 18 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑌 ∈ Ring )
20 19 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → 𝑌 ∈ Ring )
21 ovexd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 0 ... 𝑠 ) ∈ V )
22 5 1 2 3 4 mat2pmatbas ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) )
23 13 22 syl3an2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) )
24 23 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) )
25 16 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) )
26 4 matlmod ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → 𝑌 ∈ LMod )
27 25 26 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑌 ∈ LMod )
28 27 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑌 ∈ LMod )
29 eqid ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 )
30 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
31 29 30 mgpbas ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) )
32 15 3ad2ant2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑃 ∈ Ring )
33 29 ringmgp ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd )
34 32 33 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd )
35 34 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd )
36 elfznn0 ( 𝑖 ∈ ( 0 ... 𝑠 ) → 𝑖 ∈ ℕ0 )
37 36 adantl ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑖 ∈ ℕ0 )
38 13 3ad2ant2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑅 ∈ Ring )
39 6 3 30 vr1cl ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) )
40 38 39 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑋 ∈ ( Base ‘ 𝑃 ) )
41 40 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑋 ∈ ( Base ‘ 𝑃 ) )
42 31 7 35 37 41 mulgnn0cld ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑖 𝑋 ) ∈ ( Base ‘ 𝑃 ) )
43 3 ply1crng ( 𝑅 ∈ CRing → 𝑃 ∈ CRing )
44 43 anim2i ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) )
45 44 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) )
46 4 matsca2 ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → 𝑃 = ( Scalar ‘ 𝑌 ) )
47 45 46 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑃 = ( Scalar ‘ 𝑌 ) )
48 47 eqcomd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( Scalar ‘ 𝑌 ) = 𝑃 )
49 48 fveq2d ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ 𝑃 ) )
50 49 eleq2d ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( ( 𝑖 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ↔ ( 𝑖 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) )
51 50 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑖 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ↔ ( 𝑖 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) )
52 42 51 mpbird ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑖 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) )
53 simpll1 ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑁 ∈ Fin )
54 38 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑅 ∈ Ring )
55 simplrl ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑠 ∈ ℕ0 )
56 simprr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) )
57 56 anim1i ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) )
58 1 2 3 4 5 m2pmfzmap ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) ) → ( 𝑇 ‘ ( 𝑏𝑖 ) ) ∈ ( Base ‘ 𝑌 ) )
59 53 54 55 57 58 syl31anc ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑇 ‘ ( 𝑏𝑖 ) ) ∈ ( Base ‘ 𝑌 ) )
60 eqid ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 )
61 eqid ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) )
62 11 60 8 61 lmodvscl ( ( 𝑌 ∈ LMod ∧ ( 𝑖 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ ( 𝑇 ‘ ( 𝑏𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ∈ ( Base ‘ 𝑌 ) )
63 28 52 59 62 syl3anc ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ∈ ( Base ‘ 𝑌 ) )
64 simpl1 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → 𝑁 ∈ Fin )
65 38 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → 𝑅 ∈ Ring )
66 simprl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → 𝑠 ∈ ℕ0 )
67 eqid ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) )
68 fzfid ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( 0 ... 𝑠 ) ∈ Fin )
69 ovexd ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ∈ V )
70 fvexd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( 0g𝑌 ) ∈ V )
71 67 68 69 70 fsuppmptdm ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) finSupp ( 0g𝑌 ) )
72 64 65 66 56 71 syl31anc ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) finSupp ( 0g𝑌 ) )
73 11 12 9 20 21 24 63 72 gsummulc2 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑇𝑀 ) × ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) = ( ( 𝑇𝑀 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) )
74 4 matassa ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → 𝑌 ∈ AssAlg )
75 44 74 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ AssAlg )
76 75 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑌 ∈ AssAlg )
77 76 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑌 ∈ AssAlg )
78 15 adantl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ Ring )
79 78 33 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd )
80 79 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd )
81 80 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd )
82 31 7 81 37 41 mulgnn0cld ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑖 𝑋 ) ∈ ( Base ‘ 𝑃 ) )
83 49 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ 𝑃 ) )
84 82 83 eleqtrrd ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑖 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) )
85 23 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) )
86 11 60 61 8 9 assaassr ( ( 𝑌 ∈ AssAlg ∧ ( ( 𝑖 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) ∧ ( 𝑇 ‘ ( 𝑏𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑇𝑀 ) × ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) = ( ( 𝑖 𝑋 ) · ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) )
87 77 84 85 59 86 syl13anc ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑇𝑀 ) × ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) = ( ( 𝑖 𝑋 ) · ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) )
88 87 mpteq2dva ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑇𝑀 ) × ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) )
89 88 oveq2d ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑇𝑀 ) × ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) )
90 73 89 eqtr3d ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝑇𝑀 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) )