Metamath Proof Explorer


Theorem cpmadugsumlemC

Description: Lemma C for cpmadugsum . (Contributed by AV, 2-Nov-2019)

Ref Expression
Hypotheses cpmadugsum.a 𝐴 = ( 𝑁 Mat 𝑅 )
cpmadugsum.b 𝐵 = ( Base ‘ 𝐴 )
cpmadugsum.p 𝑃 = ( Poly1𝑅 )
cpmadugsum.y 𝑌 = ( 𝑁 Mat 𝑃 )
cpmadugsum.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
cpmadugsum.x 𝑋 = ( var1𝑅 )
cpmadugsum.e = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
cpmadugsum.m · = ( ·𝑠𝑌 )
cpmadugsum.r × = ( .r𝑌 )
cpmadugsum.1 1 = ( 1r𝑌 )
Assertion cpmadugsumlemC ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝑇𝑀 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cpmadugsum.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 cpmadugsum.b 𝐵 = ( Base ‘ 𝐴 )
3 cpmadugsum.p 𝑃 = ( Poly1𝑅 )
4 cpmadugsum.y 𝑌 = ( 𝑁 Mat 𝑃 )
5 cpmadugsum.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
6 cpmadugsum.x 𝑋 = ( var1𝑅 )
7 cpmadugsum.e = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
8 cpmadugsum.m · = ( ·𝑠𝑌 )
9 cpmadugsum.r × = ( .r𝑌 )
10 cpmadugsum.1 1 = ( 1r𝑌 )
11 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
12 eqid ( 0g𝑌 ) = ( 0g𝑌 )
13 eqid ( +g𝑌 ) = ( +g𝑌 )
14 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
15 3 ply1ring ( 𝑅 ∈ Ring → 𝑃 ∈ Ring )
16 14 15 syl ( 𝑅 ∈ CRing → 𝑃 ∈ Ring )
17 16 anim2i ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) )
18 4 matring ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → 𝑌 ∈ Ring )
19 17 18 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ Ring )
20 19 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑌 ∈ Ring )
21 20 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → 𝑌 ∈ Ring )
22 ovexd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 0 ... 𝑠 ) ∈ V )
23 5 1 2 3 4 mat2pmatbas ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) )
24 14 23 syl3an2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) )
25 24 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) )
26 17 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) )
27 4 matlmod ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ Ring ) → 𝑌 ∈ LMod )
28 26 27 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑌 ∈ LMod )
29 28 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑌 ∈ LMod )
30 16 3ad2ant2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑃 ∈ Ring )
31 eqid ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 )
32 31 ringmgp ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd )
33 30 32 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd )
34 33 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd )
35 elfznn0 ( 𝑖 ∈ ( 0 ... 𝑠 ) → 𝑖 ∈ ℕ0 )
36 35 adantl ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑖 ∈ ℕ0 )
37 14 3ad2ant2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑅 ∈ Ring )
38 eqid ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 )
39 6 3 38 vr1cl ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) )
40 37 39 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑋 ∈ ( Base ‘ 𝑃 ) )
41 40 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑋 ∈ ( Base ‘ 𝑃 ) )
42 31 38 mgpbas ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) )
43 42 7 mulgnn0cl ( ( ( mulGrp ‘ 𝑃 ) ∈ Mnd ∧ 𝑖 ∈ ℕ0𝑋 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑖 𝑋 ) ∈ ( Base ‘ 𝑃 ) )
44 34 36 41 43 syl3anc ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑖 𝑋 ) ∈ ( Base ‘ 𝑃 ) )
45 3 ply1crng ( 𝑅 ∈ CRing → 𝑃 ∈ CRing )
46 45 anim2i ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) )
47 46 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) )
48 4 matsca2 ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → 𝑃 = ( Scalar ‘ 𝑌 ) )
49 47 48 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑃 = ( Scalar ‘ 𝑌 ) )
50 49 eqcomd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( Scalar ‘ 𝑌 ) = 𝑃 )
51 50 fveq2d ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ 𝑃 ) )
52 51 eleq2d ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( ( 𝑖 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ↔ ( 𝑖 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) )
53 52 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑖 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ↔ ( 𝑖 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) )
54 44 53 mpbird ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑖 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) )
55 simpll1 ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑁 ∈ Fin )
56 37 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑅 ∈ Ring )
57 simplrl ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑠 ∈ ℕ0 )
58 simprr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) )
59 58 anim1i ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) )
60 1 2 3 4 5 m2pmfzmap ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ ( 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) ) → ( 𝑇 ‘ ( 𝑏𝑖 ) ) ∈ ( Base ‘ 𝑌 ) )
61 55 56 57 59 60 syl31anc ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑇 ‘ ( 𝑏𝑖 ) ) ∈ ( Base ‘ 𝑌 ) )
62 eqid ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 )
63 eqid ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) )
64 11 62 8 63 lmodvscl ( ( 𝑌 ∈ LMod ∧ ( 𝑖 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ ( 𝑇 ‘ ( 𝑏𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ∈ ( Base ‘ 𝑌 ) )
65 29 54 61 64 syl3anc ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ∈ ( Base ‘ 𝑌 ) )
66 simpl1 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → 𝑁 ∈ Fin )
67 37 adantr ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → 𝑅 ∈ Ring )
68 simprl ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → 𝑠 ∈ ℕ0 )
69 eqid ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) )
70 fzfid ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( 0 ... 𝑠 ) ∈ Fin )
71 ovexd ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ∈ V )
72 fvexd ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( 0g𝑌 ) ∈ V )
73 69 70 71 72 fsuppmptdm ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) → ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) finSupp ( 0g𝑌 ) )
74 66 67 68 58 73 syl31anc ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) finSupp ( 0g𝑌 ) )
75 11 12 13 9 21 22 25 65 74 gsummulc2 ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑇𝑀 ) × ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) = ( ( 𝑇𝑀 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) )
76 4 matassa ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → 𝑌 ∈ AssAlg )
77 46 76 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ AssAlg )
78 77 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑌 ∈ AssAlg )
79 78 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → 𝑌 ∈ AssAlg )
80 16 adantl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 ∈ Ring )
81 80 32 syl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd )
82 81 3adant3 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd )
83 82 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd )
84 83 36 41 43 syl3anc ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑖 𝑋 ) ∈ ( Base ‘ 𝑃 ) )
85 51 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ 𝑃 ) )
86 84 85 eleqtrrd ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑖 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) )
87 24 ad2antrr ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) )
88 11 62 63 8 9 assaassr ( ( 𝑌 ∈ AssAlg ∧ ( ( 𝑖 𝑋 ) ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ ( 𝑇𝑀 ) ∈ ( Base ‘ 𝑌 ) ∧ ( 𝑇 ‘ ( 𝑏𝑖 ) ) ∈ ( Base ‘ 𝑌 ) ) ) → ( ( 𝑇𝑀 ) × ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) = ( ( 𝑖 𝑋 ) · ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) )
89 79 86 87 61 88 syl13anc ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) ∧ 𝑖 ∈ ( 0 ... 𝑠 ) ) → ( ( 𝑇𝑀 ) × ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) = ( ( 𝑖 𝑋 ) · ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) )
90 89 mpteq2dva ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑇𝑀 ) × ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) = ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) )
91 90 oveq2d ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑇𝑀 ) × ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) )
92 75 91 eqtr3d ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ ( 𝑠 ∈ ℕ0𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ) → ( ( 𝑇𝑀 ) × ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ( 0 ... 𝑠 ) ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑖 ) ) ) ) ) ) )