Step |
Hyp |
Ref |
Expression |
1 |
|
cpmadumatpoly.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
cpmadumatpoly.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
cpmadumatpoly.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
cpmadumatpoly.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
5 |
|
cpmadumatpoly.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
6 |
|
cpmadumatpoly.r |
⊢ × = ( .r ‘ 𝑌 ) |
7 |
|
cpmadumatpoly.m0 |
⊢ − = ( -g ‘ 𝑌 ) |
8 |
|
cpmadumatpoly.0 |
⊢ 0 = ( 0g ‘ 𝑌 ) |
9 |
|
cpmadumatpoly.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) |
10 |
|
cpmadumatpoly.s |
⊢ 𝑆 = ( 𝑁 ConstPolyMat 𝑅 ) |
11 |
|
cpmadumatpoly.m1 |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
12 |
|
cpmadumatpoly.1 |
⊢ 1 = ( 1r ‘ 𝑌 ) |
13 |
|
cpmadumatpoly.z |
⊢ 𝑍 = ( var1 ‘ 𝑅 ) |
14 |
|
cpmadumatpoly.d |
⊢ 𝐷 = ( ( 𝑍 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) |
15 |
|
cpmadumatpoly.j |
⊢ 𝐽 = ( 𝑁 maAdju 𝑃 ) |
16 |
|
cpmadumatpoly.w |
⊢ 𝑊 = ( Base ‘ 𝑌 ) |
17 |
|
cpmadumatpoly.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
18 |
|
cpmadumatpoly.x |
⊢ 𝑋 = ( var1 ‘ 𝐴 ) |
19 |
|
cpmadumatpoly.m2 |
⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) |
20 |
|
cpmadumatpoly.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
21 |
|
cpmadumatpoly.u |
⊢ 𝑈 = ( 𝑁 cPolyMatToMat 𝑅 ) |
22 |
|
cpmadumatpoly.i |
⊢ 𝐼 = ( 𝑁 pMatToMatPoly 𝑅 ) |
23 |
|
eqid |
⊢ ( .g ‘ ( mulGrp ‘ 𝑃 ) ) = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
24 |
|
eqid |
⊢ ( +g ‘ 𝑌 ) = ( +g ‘ 𝑌 ) |
25 |
|
eqeq1 |
⊢ ( 𝑛 = 𝑧 → ( 𝑛 = 0 ↔ 𝑧 = 0 ) ) |
26 |
|
eqeq1 |
⊢ ( 𝑛 = 𝑧 → ( 𝑛 = ( 𝑠 + 1 ) ↔ 𝑧 = ( 𝑠 + 1 ) ) ) |
27 |
|
breq2 |
⊢ ( 𝑛 = 𝑧 → ( ( 𝑠 + 1 ) < 𝑛 ↔ ( 𝑠 + 1 ) < 𝑧 ) ) |
28 |
|
fvoveq1 |
⊢ ( 𝑛 = 𝑧 → ( 𝑏 ‘ ( 𝑛 − 1 ) ) = ( 𝑏 ‘ ( 𝑧 − 1 ) ) ) |
29 |
28
|
fveq2d |
⊢ ( 𝑛 = 𝑧 → ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) = ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑧 − 1 ) ) ) ) |
30 |
|
2fveq3 |
⊢ ( 𝑛 = 𝑧 → ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) = ( 𝑇 ‘ ( 𝑏 ‘ 𝑧 ) ) ) |
31 |
30
|
oveq2d |
⊢ ( 𝑛 = 𝑧 → ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) = ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑧 ) ) ) ) |
32 |
29 31
|
oveq12d |
⊢ ( 𝑛 = 𝑧 → ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) = ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑧 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑧 ) ) ) ) ) |
33 |
27 32
|
ifbieq2d |
⊢ ( 𝑛 = 𝑧 → if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) = if ( ( 𝑠 + 1 ) < 𝑧 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑧 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑧 ) ) ) ) ) ) |
34 |
26 33
|
ifbieq2d |
⊢ ( 𝑛 = 𝑧 → if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) = if ( 𝑧 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑧 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑧 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑧 ) ) ) ) ) ) ) |
35 |
25 34
|
ifbieq2d |
⊢ ( 𝑛 = 𝑧 → if ( 𝑛 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) = if ( 𝑧 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑧 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑧 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑧 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑧 ) ) ) ) ) ) ) ) |
36 |
35
|
cbvmptv |
⊢ ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) = ( 𝑧 ∈ ℕ0 ↦ if ( 𝑧 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑧 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑧 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑧 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑧 ) ) ) ) ) ) ) ) |
37 |
9 36
|
eqtri |
⊢ 𝐺 = ( 𝑧 ∈ ℕ0 ↦ if ( 𝑧 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑧 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑧 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑧 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑧 ) ) ) ) ) ) ) ) |
38 |
1 2 3 4 5 13 23 11 6 12 24 7 14 15 8 37
|
cpmadugsum |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐷 × ( 𝐽 ‘ 𝐷 ) ) = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
39 |
|
simp1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑁 ∈ Fin ) |
40 |
39
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑁 ∈ Fin ) |
41 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
42 |
41
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑅 ∈ Ring ) |
43 |
42
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
44 |
1 2 3 4 6 7 8 5 9 10
|
chfacfisfcpmat |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝐺 : ℕ0 ⟶ 𝑆 ) |
45 |
41 44
|
syl3anl2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝐺 : ℕ0 ⟶ 𝑆 ) |
46 |
45
|
anassrs |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → 𝐺 : ℕ0 ⟶ 𝑆 ) |
47 |
46
|
ffvelrnda |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) ∈ 𝑆 ) |
48 |
10 21 5
|
m2cpminvid2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ ( 𝐺 ‘ 𝑛 ) ∈ 𝑆 ) → ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) = ( 𝐺 ‘ 𝑛 ) ) |
49 |
40 43 47 48
|
syl3anc |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) = ( 𝐺 ‘ 𝑛 ) ) |
50 |
49
|
eqcomd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝐺 ‘ 𝑛 ) = ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) |
51 |
50
|
oveq2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝐺 ‘ 𝑛 ) ) = ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) |
52 |
51
|
mpteq2dva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝐺 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) |
53 |
52
|
oveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝐺 ‘ 𝑛 ) ) ) ) = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) ) |
54 |
53
|
eqeq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( ( 𝐷 × ( 𝐽 ‘ 𝐷 ) ) = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝐺 ‘ 𝑛 ) ) ) ) ↔ ( 𝐷 × ( 𝐽 ‘ 𝐷 ) ) = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) ) ) |
55 |
|
fveq2 |
⊢ ( ( 𝐷 × ( 𝐽 ‘ 𝐷 ) ) = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) → ( 𝐼 ‘ ( 𝐷 × ( 𝐽 ‘ 𝐷 ) ) ) = ( 𝐼 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) ) ) |
56 |
|
3simpa |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ) |
57 |
56
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ) |
58 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
cpmadumatpolylem1 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝑈 ∘ 𝐺 ) ∈ ( 𝐵 ↑m ℕ0 ) ) |
59 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
|
cpmadumatpolylem2 |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝑈 ∘ 𝐺 ) finSupp ( 0g ‘ 𝐴 ) ) |
60 |
3 4 16 19 20 18 1 2 17 22 23 13 11 5
|
pm2mp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( ( 𝑈 ∘ 𝐺 ) ∈ ( 𝐵 ↑m ℕ0 ) ∧ ( 𝑈 ∘ 𝐺 ) finSupp ( 0g ‘ 𝐴 ) ) ) → ( 𝐼 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝑇 ‘ ( ( 𝑈 ∘ 𝐺 ) ‘ 𝑛 ) ) ) ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑈 ∘ 𝐺 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) ) ) |
61 |
57 58 59 60
|
syl12anc |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝐼 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝑇 ‘ ( ( 𝑈 ∘ 𝐺 ) ‘ 𝑛 ) ) ) ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑈 ∘ 𝐺 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) ) ) |
62 |
|
fvco3 |
⊢ ( ( 𝐺 : ℕ0 ⟶ 𝑆 ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑈 ∘ 𝐺 ) ‘ 𝑛 ) = ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) |
63 |
62
|
eqcomd |
⊢ ( ( 𝐺 : ℕ0 ⟶ 𝑆 ∧ 𝑛 ∈ ℕ0 ) → ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( 𝑈 ∘ 𝐺 ) ‘ 𝑛 ) ) |
64 |
46 63
|
sylan |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) = ( ( 𝑈 ∘ 𝐺 ) ‘ 𝑛 ) ) |
65 |
64
|
fveq2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) = ( 𝑇 ‘ ( ( 𝑈 ∘ 𝐺 ) ‘ 𝑛 ) ) ) |
66 |
65
|
oveq2d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) = ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝑇 ‘ ( ( 𝑈 ∘ 𝐺 ) ‘ 𝑛 ) ) ) ) |
67 |
66
|
mpteq2dva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝑇 ‘ ( ( 𝑈 ∘ 𝐺 ) ‘ 𝑛 ) ) ) ) ) |
68 |
67
|
oveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝑇 ‘ ( ( 𝑈 ∘ 𝐺 ) ‘ 𝑛 ) ) ) ) ) ) |
69 |
68
|
fveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝐼 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) ) = ( 𝐼 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝑇 ‘ ( ( 𝑈 ∘ 𝐺 ) ‘ 𝑛 ) ) ) ) ) ) ) |
70 |
64
|
oveq1d |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ∗ ( 𝑛 ↑ 𝑋 ) ) = ( ( ( 𝑈 ∘ 𝐺 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) |
71 |
70
|
mpteq2dva |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑈 ∘ 𝐺 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) ) |
72 |
71
|
oveq2d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( ( 𝑈 ∘ 𝐺 ) ‘ 𝑛 ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) ) ) |
73 |
61 69 72
|
3eqtr4d |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝐼 ‘ ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) ) ) |
74 |
55 73
|
sylan9eqr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ ( 𝐷 × ( 𝐽 ‘ 𝐷 ) ) = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) ) → ( 𝐼 ‘ ( 𝐷 × ( 𝐽 ‘ 𝐷 ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) ) ) |
75 |
74
|
ex |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( ( 𝐷 × ( 𝐽 ‘ 𝐷 ) ) = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝑇 ‘ ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ) ) ) ) → ( 𝐼 ‘ ( 𝐷 × ( 𝐽 ‘ 𝐷 ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) ) ) ) |
76 |
54 75
|
sylbid |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( ( 𝐷 × ( 𝐽 ‘ 𝐷 ) ) = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝐺 ‘ 𝑛 ) ) ) ) → ( 𝐼 ‘ ( 𝐷 × ( 𝐽 ‘ 𝐷 ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) ) ) ) |
77 |
76
|
reximdva |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) → ( ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐷 × ( 𝐽 ‘ 𝐷 ) ) = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝐺 ‘ 𝑛 ) ) ) ) → ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐼 ‘ ( 𝐷 × ( 𝐽 ‘ 𝐷 ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) ) ) ) |
78 |
77
|
reximdva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐷 × ( 𝐽 ‘ 𝐷 ) ) = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ( .g ‘ ( mulGrp ‘ 𝑃 ) ) 𝑍 ) · ( 𝐺 ‘ 𝑛 ) ) ) ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐼 ‘ ( 𝐷 × ( 𝐽 ‘ 𝐷 ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) ) ) ) |
79 |
38 78
|
mpd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐼 ‘ ( 𝐷 × ( 𝐽 ‘ 𝐷 ) ) ) = ( 𝑄 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑈 ‘ ( 𝐺 ‘ 𝑛 ) ) ∗ ( 𝑛 ↑ 𝑋 ) ) ) ) ) |