| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cpmadumatpoly.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
cpmadumatpoly.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
cpmadumatpoly.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 4 |
|
cpmadumatpoly.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
| 5 |
|
cpmadumatpoly.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
| 6 |
|
cpmadumatpoly.r |
⊢ × = ( .r ‘ 𝑌 ) |
| 7 |
|
cpmadumatpoly.m0 |
⊢ − = ( -g ‘ 𝑌 ) |
| 8 |
|
cpmadumatpoly.0 |
⊢ 0 = ( 0g ‘ 𝑌 ) |
| 9 |
|
cpmadumatpoly.g |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) |
| 10 |
|
cpmadumatpoly.s |
⊢ 𝑆 = ( 𝑁 ConstPolyMat 𝑅 ) |
| 11 |
|
cpmadumatpoly.m1 |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
| 12 |
|
cpmadumatpoly.1 |
⊢ 1 = ( 1r ‘ 𝑌 ) |
| 13 |
|
cpmadumatpoly.z |
⊢ 𝑍 = ( var1 ‘ 𝑅 ) |
| 14 |
|
cpmadumatpoly.d |
⊢ 𝐷 = ( ( 𝑍 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) |
| 15 |
|
cpmadumatpoly.j |
⊢ 𝐽 = ( 𝑁 maAdju 𝑃 ) |
| 16 |
|
cpmadumatpoly.w |
⊢ 𝑊 = ( Base ‘ 𝑌 ) |
| 17 |
|
cpmadumatpoly.q |
⊢ 𝑄 = ( Poly1 ‘ 𝐴 ) |
| 18 |
|
cpmadumatpoly.x |
⊢ 𝑋 = ( var1 ‘ 𝐴 ) |
| 19 |
|
cpmadumatpoly.m2 |
⊢ ∗ = ( ·𝑠 ‘ 𝑄 ) |
| 20 |
|
cpmadumatpoly.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑄 ) ) |
| 21 |
|
cpmadumatpoly.u |
⊢ 𝑈 = ( 𝑁 cPolyMatToMat 𝑅 ) |
| 22 |
|
fvexd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 0g ‘ 𝐴 ) ∈ V ) |
| 23 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 24 |
23
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 25 |
24
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 26 |
25
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 27 |
10 3 4
|
0elcpmat |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 0g ‘ 𝑌 ) ∈ 𝑆 ) |
| 28 |
26 27
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 0g ‘ 𝑌 ) ∈ 𝑆 ) |
| 29 |
1 2 3 4 6 7 8 5 9 10
|
chfacfisfcpmat |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝐺 : ℕ0 ⟶ 𝑆 ) |
| 30 |
23 29
|
syl3anl2 |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝐺 : ℕ0 ⟶ 𝑆 ) |
| 31 |
30
|
anassrs |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → 𝐺 : ℕ0 ⟶ 𝑆 ) |
| 32 |
1 2 10 21
|
cpm2mf |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑈 : 𝑆 ⟶ 𝐵 ) |
| 33 |
26 32
|
syl |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → 𝑈 : 𝑆 ⟶ 𝐵 ) |
| 34 |
|
ssidd |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → 𝑆 ⊆ 𝑆 ) |
| 35 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 36 |
35
|
a1i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ℕ0 ∈ V ) |
| 37 |
10
|
ovexi |
⊢ 𝑆 ∈ V |
| 38 |
37
|
a1i |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → 𝑆 ∈ V ) |
| 39 |
1 2 3 4 6 7 8 5 9
|
chfacffsupp |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝑠 ∈ ℕ ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ) → 𝐺 finSupp ( 0g ‘ 𝑌 ) ) |
| 40 |
39
|
anassrs |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → 𝐺 finSupp ( 0g ‘ 𝑌 ) ) |
| 41 |
|
eqid |
⊢ ( 0g ‘ 𝐴 ) = ( 0g ‘ 𝐴 ) |
| 42 |
|
eqid |
⊢ ( 0g ‘ 𝑌 ) = ( 0g ‘ 𝑌 ) |
| 43 |
1 21 3 4 41 42
|
m2cpminv0 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑈 ‘ ( 0g ‘ 𝑌 ) ) = ( 0g ‘ 𝐴 ) ) |
| 44 |
23 43
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑈 ‘ ( 0g ‘ 𝑌 ) ) = ( 0g ‘ 𝐴 ) ) |
| 45 |
44
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑈 ‘ ( 0g ‘ 𝑌 ) ) = ( 0g ‘ 𝐴 ) ) |
| 46 |
45
|
ad2antrr |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝑈 ‘ ( 0g ‘ 𝑌 ) ) = ( 0g ‘ 𝐴 ) ) |
| 47 |
22 28 31 33 34 36 38 40 46
|
fsuppcor |
⊢ ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) → ( 𝑈 ∘ 𝐺 ) finSupp ( 0g ‘ 𝐴 ) ) |