Step |
Hyp |
Ref |
Expression |
1 |
|
cpmadurid.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
cpmadurid.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
cpmadurid.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
4 |
|
cpmadurid.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
5 |
|
cpmadurid.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
6 |
|
cpmadurid.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
7 |
|
cpmadurid.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
8 |
|
cpmadurid.s |
⊢ − = ( -g ‘ 𝑌 ) |
9 |
|
cpmadurid.m1 |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
10 |
|
cpmadurid.1 |
⊢ 1 = ( 1r ‘ 𝑌 ) |
11 |
|
cpmadurid.i |
⊢ 𝐼 = ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) |
12 |
|
cpmadurid.j |
⊢ 𝐽 = ( 𝑁 maAdju 𝑃 ) |
13 |
|
cpmadurid.m2 |
⊢ × = ( .r ‘ 𝑌 ) |
14 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
15 |
1 2 4 5 6 7 8 9 10 11
|
chmatcl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → 𝐼 ∈ ( Base ‘ 𝑌 ) ) |
16 |
14 15
|
syl3an2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐼 ∈ ( Base ‘ 𝑌 ) ) |
17 |
4
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
18 |
17
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑃 ∈ CRing ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
20 |
|
eqid |
⊢ ( 𝑁 maDet 𝑃 ) = ( 𝑁 maDet 𝑃 ) |
21 |
5 19 12 20 10 13 9
|
madurid |
⊢ ( ( 𝐼 ∈ ( Base ‘ 𝑌 ) ∧ 𝑃 ∈ CRing ) → ( 𝐼 × ( 𝐽 ‘ 𝐼 ) ) = ( ( ( 𝑁 maDet 𝑃 ) ‘ 𝐼 ) · 1 ) ) |
22 |
16 18 21
|
syl2anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 × ( 𝐽 ‘ 𝐼 ) ) = ( ( ( 𝑁 maDet 𝑃 ) ‘ 𝐼 ) · 1 ) ) |
23 |
3 1 2 4 5 20 8 6 9 7 10
|
chpmatval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐶 ‘ 𝑀 ) = ( ( 𝑁 maDet 𝑃 ) ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) ) ) |
24 |
11
|
a1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐼 = ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) ) |
25 |
24
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) = 𝐼 ) |
26 |
25
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑁 maDet 𝑃 ) ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) ) = ( ( 𝑁 maDet 𝑃 ) ‘ 𝐼 ) ) |
27 |
23 26
|
eqtr2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑁 maDet 𝑃 ) ‘ 𝐼 ) = ( 𝐶 ‘ 𝑀 ) ) |
28 |
27
|
oveq1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( ( 𝑁 maDet 𝑃 ) ‘ 𝐼 ) · 1 ) = ( ( 𝐶 ‘ 𝑀 ) · 1 ) ) |
29 |
22 28
|
eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 × ( 𝐽 ‘ 𝐼 ) ) = ( ( 𝐶 ‘ 𝑀 ) · 1 ) ) |