Metamath Proof Explorer


Theorem cpmadurid

Description: The right-hand fundamental relation of the adjugate (see madurid ) applied to the characteristic matrix of a matrix. (Contributed by AV, 25-Oct-2019)

Ref Expression
Hypotheses cpmadurid.a 𝐴 = ( 𝑁 Mat 𝑅 )
cpmadurid.b 𝐵 = ( Base ‘ 𝐴 )
cpmadurid.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
cpmadurid.p 𝑃 = ( Poly1𝑅 )
cpmadurid.y 𝑌 = ( 𝑁 Mat 𝑃 )
cpmadurid.x 𝑋 = ( var1𝑅 )
cpmadurid.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
cpmadurid.s = ( -g𝑌 )
cpmadurid.m1 · = ( ·𝑠𝑌 )
cpmadurid.1 1 = ( 1r𝑌 )
cpmadurid.i 𝐼 = ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) )
cpmadurid.j 𝐽 = ( 𝑁 maAdju 𝑃 )
cpmadurid.m2 × = ( .r𝑌 )
Assertion cpmadurid ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝐼 × ( 𝐽𝐼 ) ) = ( ( 𝐶𝑀 ) · 1 ) )

Proof

Step Hyp Ref Expression
1 cpmadurid.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 cpmadurid.b 𝐵 = ( Base ‘ 𝐴 )
3 cpmadurid.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
4 cpmadurid.p 𝑃 = ( Poly1𝑅 )
5 cpmadurid.y 𝑌 = ( 𝑁 Mat 𝑃 )
6 cpmadurid.x 𝑋 = ( var1𝑅 )
7 cpmadurid.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
8 cpmadurid.s = ( -g𝑌 )
9 cpmadurid.m1 · = ( ·𝑠𝑌 )
10 cpmadurid.1 1 = ( 1r𝑌 )
11 cpmadurid.i 𝐼 = ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) )
12 cpmadurid.j 𝐽 = ( 𝑁 maAdju 𝑃 )
13 cpmadurid.m2 × = ( .r𝑌 )
14 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
15 1 2 4 5 6 7 8 9 10 11 chmatcl ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵 ) → 𝐼 ∈ ( Base ‘ 𝑌 ) )
16 14 15 syl3an2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝐼 ∈ ( Base ‘ 𝑌 ) )
17 4 ply1crng ( 𝑅 ∈ CRing → 𝑃 ∈ CRing )
18 17 3ad2ant2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝑃 ∈ CRing )
19 eqid ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 )
20 eqid ( 𝑁 maDet 𝑃 ) = ( 𝑁 maDet 𝑃 )
21 5 19 12 20 10 13 9 madurid ( ( 𝐼 ∈ ( Base ‘ 𝑌 ) ∧ 𝑃 ∈ CRing ) → ( 𝐼 × ( 𝐽𝐼 ) ) = ( ( ( 𝑁 maDet 𝑃 ) ‘ 𝐼 ) · 1 ) )
22 16 18 21 syl2anc ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝐼 × ( 𝐽𝐼 ) ) = ( ( ( 𝑁 maDet 𝑃 ) ‘ 𝐼 ) · 1 ) )
23 3 1 2 4 5 20 8 6 9 7 10 chpmatval ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝐶𝑀 ) = ( ( 𝑁 maDet 𝑃 ) ‘ ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) ) )
24 11 a1i ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → 𝐼 = ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) )
25 24 eqcomd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) = 𝐼 )
26 25 fveq2d ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( ( 𝑁 maDet 𝑃 ) ‘ ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) ) ) = ( ( 𝑁 maDet 𝑃 ) ‘ 𝐼 ) )
27 23 26 eqtr2d ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( ( 𝑁 maDet 𝑃 ) ‘ 𝐼 ) = ( 𝐶𝑀 ) )
28 27 oveq1d ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( ( ( 𝑁 maDet 𝑃 ) ‘ 𝐼 ) · 1 ) = ( ( 𝐶𝑀 ) · 1 ) )
29 22 28 eqtrd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝐼 × ( 𝐽𝐼 ) ) = ( ( 𝐶𝑀 ) · 1 ) )