Step |
Hyp |
Ref |
Expression |
1 |
|
cpmat.s |
⊢ 𝑆 = ( 𝑁 ConstPolyMat 𝑅 ) |
2 |
|
cpmat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
cpmat.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
4 |
|
cpmat.b |
⊢ 𝐵 = ( Base ‘ 𝐶 ) |
5 |
1 2 3 4
|
cpmat |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → 𝑆 = { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) } ) |
6 |
5
|
eleq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑀 ∈ 𝑆 ↔ 𝑀 ∈ { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) } ) ) |
7 |
|
elrabi |
⊢ ( 𝑀 ∈ { 𝑚 ∈ 𝐵 ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) } → 𝑀 ∈ 𝐵 ) |
8 |
6 7
|
syl6bi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ) → ( 𝑀 ∈ 𝑆 → 𝑀 ∈ 𝐵 ) ) |
9 |
8
|
3impia |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ 𝑉 ∧ 𝑀 ∈ 𝑆 ) → 𝑀 ∈ 𝐵 ) |