Step |
Hyp |
Ref |
Expression |
1 |
|
cpmatsrngpmat.s |
⊢ 𝑆 = ( 𝑁 ConstPolyMat 𝑅 ) |
2 |
|
cpmatsrngpmat.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
cpmatsrngpmat.c |
⊢ 𝐶 = ( 𝑁 Mat 𝑃 ) |
4 |
|
eqid |
⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) |
5 |
1 2 3 4
|
cpmat |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 = { 𝑚 ∈ ( Base ‘ 𝐶 ) ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) } ) |
6 |
|
ssrab2 |
⊢ { 𝑚 ∈ ( Base ‘ 𝐶 ) ∣ ∀ 𝑖 ∈ 𝑁 ∀ 𝑗 ∈ 𝑁 ∀ 𝑘 ∈ ℕ ( ( coe1 ‘ ( 𝑖 𝑚 𝑗 ) ) ‘ 𝑘 ) = ( 0g ‘ 𝑅 ) } ⊆ ( Base ‘ 𝐶 ) |
7 |
5 6
|
eqsstrdi |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ⊆ ( Base ‘ 𝐶 ) ) |
8 |
1 2 3
|
1elcpmat |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 1r ‘ 𝐶 ) ∈ 𝑆 ) |
9 |
8
|
ne0d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ≠ ∅ ) |
10 |
1 2 3
|
cpmatacl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) ∈ 𝑆 ) |
11 |
1 2 3
|
cpmatinvcl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑥 ∈ 𝑆 ( ( invg ‘ 𝐶 ) ‘ 𝑥 ) ∈ 𝑆 ) |
12 |
|
r19.26 |
⊢ ( ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) ∈ 𝑆 ∧ ( ( invg ‘ 𝐶 ) ‘ 𝑥 ) ∈ 𝑆 ) ↔ ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ( invg ‘ 𝐶 ) ‘ 𝑥 ) ∈ 𝑆 ) ) |
13 |
10 11 12
|
sylanbrc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) ∈ 𝑆 ∧ ( ( invg ‘ 𝐶 ) ‘ 𝑥 ) ∈ 𝑆 ) ) |
14 |
2 3
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐶 ∈ Ring ) |
15 |
|
ringgrp |
⊢ ( 𝐶 ∈ Ring → 𝐶 ∈ Grp ) |
16 |
|
eqid |
⊢ ( +g ‘ 𝐶 ) = ( +g ‘ 𝐶 ) |
17 |
|
eqid |
⊢ ( invg ‘ 𝐶 ) = ( invg ‘ 𝐶 ) |
18 |
4 16 17
|
issubg2 |
⊢ ( 𝐶 ∈ Grp → ( 𝑆 ∈ ( SubGrp ‘ 𝐶 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝐶 ) ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) ∈ 𝑆 ∧ ( ( invg ‘ 𝐶 ) ‘ 𝑥 ) ∈ 𝑆 ) ) ) ) |
19 |
14 15 18
|
3syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → ( 𝑆 ∈ ( SubGrp ‘ 𝐶 ) ↔ ( 𝑆 ⊆ ( Base ‘ 𝐶 ) ∧ 𝑆 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝑆 ( ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝐶 ) 𝑦 ) ∈ 𝑆 ∧ ( ( invg ‘ 𝐶 ) ‘ 𝑥 ) ∈ 𝑆 ) ) ) ) |
20 |
7 9 13 19
|
mpbir3and |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑆 ∈ ( SubGrp ‘ 𝐶 ) ) |