Step |
Hyp |
Ref |
Expression |
1 |
|
cpmadugsum.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
cpmadugsum.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
cpmadugsum.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
cpmadugsum.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
5 |
|
cpmadugsum.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
6 |
|
cpmadugsum.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
7 |
|
cpmadugsum.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
8 |
|
cpmadugsum.m |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
9 |
|
cpmadugsum.r |
⊢ × = ( .r ‘ 𝑌 ) |
10 |
|
cpmadugsum.1 |
⊢ 1 = ( 1r ‘ 𝑌 ) |
11 |
|
cpmadugsum.g |
⊢ + = ( +g ‘ 𝑌 ) |
12 |
|
cpmadugsum.s |
⊢ − = ( -g ‘ 𝑌 ) |
13 |
|
cpmadugsum.i |
⊢ 𝐼 = ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) |
14 |
|
cpmadugsum.j |
⊢ 𝐽 = ( 𝑁 maAdju 𝑃 ) |
15 |
|
cpmadugsum.0 |
⊢ 0 = ( 0g ‘ 𝑌 ) |
16 |
|
cpmadugsum.g2 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) |
17 |
|
cpmidgsum2.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
18 |
|
cpmidgsum2.k |
⊢ 𝐾 = ( 𝐶 ‘ 𝑀 ) |
19 |
|
cpmidg2sum.u |
⊢ 𝑈 = ( algSc ‘ 𝑃 ) |
20 |
|
eqid |
⊢ ( 𝐾 · 1 ) = ( 𝐾 · 1 ) |
21 |
1 2 3 4 6 7 8 10 19 17 18 20
|
cpmidgsum |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐾 · 1 ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ) · 1 ) ) ) ) ) |
22 |
21
|
eqcomd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ) · 1 ) ) ) ) = ( 𝐾 · 1 ) ) |
23 |
22
|
ad3antrrr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ ( 𝐾 · 1 ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝐺 ‘ 𝑖 ) ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ) · 1 ) ) ) ) = ( 𝐾 · 1 ) ) |
24 |
|
simpr |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ ( 𝐾 · 1 ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝐺 ‘ 𝑖 ) ) ) ) ) → ( 𝐾 · 1 ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝐺 ‘ 𝑖 ) ) ) ) ) |
25 |
23 24
|
eqtrd |
⊢ ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ) ∧ ( 𝐾 · 1 ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝐺 ‘ 𝑖 ) ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ) · 1 ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝐺 ‘ 𝑖 ) ) ) ) ) |
26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20
|
cpmidgsum2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐾 · 1 ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝐺 ‘ 𝑖 ) ) ) ) ) |
27 |
25 26
|
reximddv2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑖 ) ) · 1 ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝐺 ‘ 𝑖 ) ) ) ) ) |