Metamath Proof Explorer


Theorem cpmidg2sum

Description: Equality of two sums representing the identity matrix multiplied with the characteristic polynomial of a matrix. (Contributed by AV, 11-Nov-2019)

Ref Expression
Hypotheses cpmadugsum.a 𝐴 = ( 𝑁 Mat 𝑅 )
cpmadugsum.b 𝐵 = ( Base ‘ 𝐴 )
cpmadugsum.p 𝑃 = ( Poly1𝑅 )
cpmadugsum.y 𝑌 = ( 𝑁 Mat 𝑃 )
cpmadugsum.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
cpmadugsum.x 𝑋 = ( var1𝑅 )
cpmadugsum.e = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
cpmadugsum.m · = ( ·𝑠𝑌 )
cpmadugsum.r × = ( .r𝑌 )
cpmadugsum.1 1 = ( 1r𝑌 )
cpmadugsum.g + = ( +g𝑌 )
cpmadugsum.s = ( -g𝑌 )
cpmadugsum.i 𝐼 = ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) )
cpmadugsum.j 𝐽 = ( 𝑁 maAdju 𝑃 )
cpmadugsum.0 0 = ( 0g𝑌 )
cpmadugsum.g2 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) )
cpmidgsum2.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
cpmidgsum2.k 𝐾 = ( 𝐶𝑀 )
cpmidg2sum.u 𝑈 = ( algSc ‘ 𝑃 )
Assertion cpmidg2sum ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1𝐾 ) ‘ 𝑖 ) ) · 1 ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 cpmadugsum.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 cpmadugsum.b 𝐵 = ( Base ‘ 𝐴 )
3 cpmadugsum.p 𝑃 = ( Poly1𝑅 )
4 cpmadugsum.y 𝑌 = ( 𝑁 Mat 𝑃 )
5 cpmadugsum.t 𝑇 = ( 𝑁 matToPolyMat 𝑅 )
6 cpmadugsum.x 𝑋 = ( var1𝑅 )
7 cpmadugsum.e = ( .g ‘ ( mulGrp ‘ 𝑃 ) )
8 cpmadugsum.m · = ( ·𝑠𝑌 )
9 cpmadugsum.r × = ( .r𝑌 )
10 cpmadugsum.1 1 = ( 1r𝑌 )
11 cpmadugsum.g + = ( +g𝑌 )
12 cpmadugsum.s = ( -g𝑌 )
13 cpmadugsum.i 𝐼 = ( ( 𝑋 · 1 ) ( 𝑇𝑀 ) )
14 cpmadugsum.j 𝐽 = ( 𝑁 maAdju 𝑃 )
15 cpmadugsum.0 0 = ( 0g𝑌 )
16 cpmadugsum.g2 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) ( ( 𝑇𝑀 ) × ( 𝑇 ‘ ( 𝑏𝑛 ) ) ) ) ) ) ) )
17 cpmidgsum2.c 𝐶 = ( 𝑁 CharPlyMat 𝑅 )
18 cpmidgsum2.k 𝐾 = ( 𝐶𝑀 )
19 cpmidg2sum.u 𝑈 = ( algSc ‘ 𝑃 )
20 eqid ( 𝐾 · 1 ) = ( 𝐾 · 1 )
21 1 2 3 4 6 7 8 10 19 17 18 20 cpmidgsum ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝐾 · 1 ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1𝐾 ) ‘ 𝑖 ) ) · 1 ) ) ) ) )
22 21 eqcomd ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1𝐾 ) ‘ 𝑖 ) ) · 1 ) ) ) ) = ( 𝐾 · 1 ) )
23 22 ad3antrrr ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ ( 𝐾 · 1 ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1𝐾 ) ‘ 𝑖 ) ) · 1 ) ) ) ) = ( 𝐾 · 1 ) )
24 simpr ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ ( 𝐾 · 1 ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) ) → ( 𝐾 · 1 ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) )
25 23 24 eqtrd ( ( ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) ∧ 𝑠 ∈ ℕ ) ∧ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ) ∧ ( 𝐾 · 1 ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) ) → ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1𝐾 ) ‘ 𝑖 ) ) · 1 ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) )
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 20 cpmidgsum2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ( 𝐾 · 1 ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) )
27 25 26 reximddv2 ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵m ( 0 ... 𝑠 ) ) ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1𝐾 ) ‘ 𝑖 ) ) · 1 ) ) ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 𝑋 ) · ( 𝐺𝑖 ) ) ) ) )