Step |
Hyp |
Ref |
Expression |
1 |
|
cpmidgsum.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
cpmidgsum.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
cpmidgsum.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
cpmidgsum.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
5 |
|
cpmidgsum.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
6 |
|
cpmidgsum.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
7 |
|
cpmidgsum.m |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
8 |
|
cpmidgsum.1 |
⊢ 1 = ( 1r ‘ 𝑌 ) |
9 |
|
cpmidgsum.u |
⊢ 𝑈 = ( algSc ‘ 𝑃 ) |
10 |
|
cpmidgsum.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
11 |
|
cpmidgsum.k |
⊢ 𝐾 = ( 𝐶 ‘ 𝑀 ) |
12 |
|
cpmidgsum.h |
⊢ 𝐻 = ( 𝐾 · 1 ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
14 |
10 1 2 3 13
|
chpmatply1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐶 ‘ 𝑀 ) ∈ ( Base ‘ 𝑃 ) ) |
15 |
11 14
|
eqeltrid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐾 ∈ ( Base ‘ 𝑃 ) ) |
16 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
17 |
|
eqid |
⊢ ( 𝑁 matToPolyMat 𝑅 ) = ( 𝑁 matToPolyMat 𝑅 ) |
18 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
19 |
3 4 16 7 6 5 17 1 2 9 18 13 9 8 12
|
pmatcollpwscmat |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝐾 ∈ ( Base ‘ 𝑃 ) ) → 𝐻 = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ) · 1 ) ) ) ) ) |
20 |
15 19
|
syld3an3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐻 = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ) · 1 ) ) ) ) ) |