Step |
Hyp |
Ref |
Expression |
1 |
|
cpmadugsum.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
cpmadugsum.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
cpmadugsum.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
cpmadugsum.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
5 |
|
cpmadugsum.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
6 |
|
cpmadugsum.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
7 |
|
cpmadugsum.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
8 |
|
cpmadugsum.m |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
9 |
|
cpmadugsum.r |
⊢ × = ( .r ‘ 𝑌 ) |
10 |
|
cpmadugsum.1 |
⊢ 1 = ( 1r ‘ 𝑌 ) |
11 |
|
cpmadugsum.g |
⊢ + = ( +g ‘ 𝑌 ) |
12 |
|
cpmadugsum.s |
⊢ − = ( -g ‘ 𝑌 ) |
13 |
|
cpmadugsum.i |
⊢ 𝐼 = ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) |
14 |
|
cpmadugsum.j |
⊢ 𝐽 = ( 𝑁 maAdju 𝑃 ) |
15 |
|
cpmadugsum.0 |
⊢ 0 = ( 0g ‘ 𝑌 ) |
16 |
|
cpmadugsum.g2 |
⊢ 𝐺 = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 0 , ( 0 − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 0 ) ) ) ) , if ( 𝑛 = ( 𝑠 + 1 ) , ( 𝑇 ‘ ( 𝑏 ‘ 𝑠 ) ) , if ( ( 𝑠 + 1 ) < 𝑛 , 0 , ( ( 𝑇 ‘ ( 𝑏 ‘ ( 𝑛 − 1 ) ) ) − ( ( 𝑇 ‘ 𝑀 ) × ( 𝑇 ‘ ( 𝑏 ‘ 𝑛 ) ) ) ) ) ) ) ) |
17 |
|
cpmidgsum2.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
18 |
|
cpmidgsum2.k |
⊢ 𝐾 = ( 𝐶 ‘ 𝑀 ) |
19 |
|
cpmidgsum2.h |
⊢ 𝐻 = ( 𝐾 · 1 ) |
20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|
cpmadugsum |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐼 × ( 𝐽 ‘ 𝐼 ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝐺 ‘ 𝑖 ) ) ) ) ) |
21 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
22 |
21
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
23 |
22
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
24 |
3 4
|
pmatring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ Ring ) |
25 |
|
ringgrp |
⊢ ( 𝑌 ∈ Ring → 𝑌 ∈ Grp ) |
26 |
23 24 25
|
3syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑌 ∈ Grp ) |
27 |
3 4
|
pmatlmod |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝑌 ∈ LMod ) |
28 |
21 27
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑌 ∈ LMod ) |
29 |
21
|
adantl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring ) |
30 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
31 |
6 3 30
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
32 |
29 31
|
syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
33 |
3
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
34 |
4
|
matsca2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑃 ∈ CRing ) → 𝑃 = ( Scalar ‘ 𝑌 ) ) |
35 |
33 34
|
sylan2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑃 = ( Scalar ‘ 𝑌 ) ) |
36 |
35
|
fveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( Base ‘ 𝑃 ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
37 |
32 36
|
eleqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ) |
38 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
39 |
38 10
|
ringidcl |
⊢ ( 𝑌 ∈ Ring → 1 ∈ ( Base ‘ 𝑌 ) ) |
40 |
22 24 39
|
3syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 1 ∈ ( Base ‘ 𝑌 ) ) |
41 |
|
eqid |
⊢ ( Scalar ‘ 𝑌 ) = ( Scalar ‘ 𝑌 ) |
42 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑌 ) ) = ( Base ‘ ( Scalar ‘ 𝑌 ) ) |
43 |
38 41 8 42
|
lmodvscl |
⊢ ( ( 𝑌 ∈ LMod ∧ 𝑋 ∈ ( Base ‘ ( Scalar ‘ 𝑌 ) ) ∧ 1 ∈ ( Base ‘ 𝑌 ) ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) ) |
44 |
28 37 40 43
|
syl3anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) ) |
45 |
44
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) ) |
46 |
5 1 2 3 4
|
mat2pmatbas |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
47 |
21 46
|
syl3an2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) |
48 |
38 12
|
grpsubcl |
⊢ ( ( 𝑌 ∈ Grp ∧ ( 𝑋 · 1 ) ∈ ( Base ‘ 𝑌 ) ∧ ( 𝑇 ‘ 𝑀 ) ∈ ( Base ‘ 𝑌 ) ) → ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ) |
49 |
26 45 47 48
|
syl3anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ) |
50 |
33
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑃 ∈ CRing ) |
51 |
|
eqid |
⊢ ( 𝑁 maDet 𝑃 ) = ( 𝑁 maDet 𝑃 ) |
52 |
4 38 14 51 10 9 8
|
madurid |
⊢ ( ( ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑌 ) ∧ 𝑃 ∈ CRing ) → ( ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) × ( 𝐽 ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) ) ) = ( ( ( 𝑁 maDet 𝑃 ) ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) ) · 1 ) ) |
53 |
49 50 52
|
syl2anc |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) × ( 𝐽 ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) ) ) = ( ( ( 𝑁 maDet 𝑃 ) ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) ) · 1 ) ) |
54 |
|
id |
⊢ ( 𝐼 = ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) → 𝐼 = ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) ) |
55 |
|
fveq2 |
⊢ ( 𝐼 = ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) → ( 𝐽 ‘ 𝐼 ) = ( 𝐽 ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) ) ) |
56 |
54 55
|
oveq12d |
⊢ ( 𝐼 = ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) → ( 𝐼 × ( 𝐽 ‘ 𝐼 ) ) = ( ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) × ( 𝐽 ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) |
57 |
13 56
|
mp1i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐼 × ( 𝐽 ‘ 𝐼 ) ) = ( ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) × ( 𝐽 ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) ) ) ) |
58 |
17 1 2 3 4 51 12 6 8 5 10
|
chpmatval |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐶 ‘ 𝑀 ) = ( ( 𝑁 maDet 𝑃 ) ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) ) ) |
59 |
18 58
|
syl5eq |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐾 = ( ( 𝑁 maDet 𝑃 ) ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) ) ) |
60 |
59
|
oveq1d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐾 · 1 ) = ( ( ( 𝑁 maDet 𝑃 ) ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) ) · 1 ) ) |
61 |
19 60
|
syl5eq |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐻 = ( ( ( 𝑁 maDet 𝑃 ) ‘ ( ( 𝑋 · 1 ) − ( 𝑇 ‘ 𝑀 ) ) ) · 1 ) ) |
62 |
53 57 61
|
3eqtr4rd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐻 = ( 𝐼 × ( 𝐽 ‘ 𝐼 ) ) ) |
63 |
62
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 × ( 𝐽 ‘ 𝐼 ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝐺 ‘ 𝑖 ) ) ) ) ) → 𝐻 = ( 𝐼 × ( 𝐽 ‘ 𝐼 ) ) ) |
64 |
|
simpr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 × ( 𝐽 ‘ 𝐼 ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝐺 ‘ 𝑖 ) ) ) ) ) → ( 𝐼 × ( 𝐽 ‘ 𝐼 ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝐺 ‘ 𝑖 ) ) ) ) ) |
65 |
63 64
|
eqtrd |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ ( 𝐼 × ( 𝐽 ‘ 𝐼 ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝐺 ‘ 𝑖 ) ) ) ) ) → 𝐻 = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝐺 ‘ 𝑖 ) ) ) ) ) |
66 |
65
|
ex |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝐼 × ( 𝐽 ‘ 𝐼 ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝐺 ‘ 𝑖 ) ) ) ) → 𝐻 = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) |
67 |
66
|
reximdv |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐼 × ( 𝐽 ‘ 𝐼 ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝐺 ‘ 𝑖 ) ) ) ) → ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) 𝐻 = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) |
68 |
67
|
reximdv |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) ( 𝐼 × ( 𝐽 ‘ 𝐼 ) ) = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝐺 ‘ 𝑖 ) ) ) ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) 𝐻 = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝐺 ‘ 𝑖 ) ) ) ) ) ) |
69 |
20 68
|
mpd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ∃ 𝑠 ∈ ℕ ∃ 𝑏 ∈ ( 𝐵 ↑m ( 0 ... 𝑠 ) ) 𝐻 = ( 𝑌 Σg ( 𝑖 ∈ ℕ0 ↦ ( ( 𝑖 ↑ 𝑋 ) · ( 𝐺 ‘ 𝑖 ) ) ) ) ) |