Step |
Hyp |
Ref |
Expression |
1 |
|
cpmidgsum.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
cpmidgsum.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
cpmidgsum.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
4 |
|
cpmidgsum.y |
⊢ 𝑌 = ( 𝑁 Mat 𝑃 ) |
5 |
|
cpmidgsum.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
6 |
|
cpmidgsum.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
7 |
|
cpmidgsum.m |
⊢ · = ( ·𝑠 ‘ 𝑌 ) |
8 |
|
cpmidgsum.1 |
⊢ 1 = ( 1r ‘ 𝑌 ) |
9 |
|
cpmidgsum.u |
⊢ 𝑈 = ( algSc ‘ 𝑃 ) |
10 |
|
cpmidgsum.c |
⊢ 𝐶 = ( 𝑁 CharPlyMat 𝑅 ) |
11 |
|
cpmidgsum.k |
⊢ 𝐾 = ( 𝐶 ‘ 𝑀 ) |
12 |
|
cpmidgsum.h |
⊢ 𝐻 = ( 𝐾 · 1 ) |
13 |
|
cpmidgsumm2pm.o |
⊢ 𝑂 = ( 1r ‘ 𝐴 ) |
14 |
|
cpmidgsumm2pm.m |
⊢ ∗ = ( ·𝑠 ‘ 𝐴 ) |
15 |
|
cpmidgsumm2pm.t |
⊢ 𝑇 = ( 𝑁 matToPolyMat 𝑅 ) |
16 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cpmidgsum |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐻 = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ) · 1 ) ) ) ) ) |
17 |
|
3simpa |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
20 |
10 1 2 3 19
|
chpmatply1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐶 ‘ 𝑀 ) ∈ ( Base ‘ 𝑃 ) ) |
21 |
11 20
|
eqeltrid |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐾 ∈ ( Base ‘ 𝑃 ) ) |
22 |
|
eqid |
⊢ ( coe1 ‘ 𝐾 ) = ( coe1 ‘ 𝐾 ) |
23 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
24 |
22 19 3 23
|
coe1fvalcl |
⊢ ( ( 𝐾 ∈ ( Base ‘ 𝑃 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
25 |
21 24
|
sylan |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
26 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
27 |
26
|
anim2i |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
28 |
1
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
29 |
2 13
|
ringidcl |
⊢ ( 𝐴 ∈ Ring → 𝑂 ∈ 𝐵 ) |
30 |
27 28 29
|
3syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑂 ∈ 𝐵 ) |
31 |
30
|
3adant3 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝑂 ∈ 𝐵 ) |
32 |
31
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → 𝑂 ∈ 𝐵 ) |
33 |
|
eqid |
⊢ ( Base ‘ 𝑌 ) = ( Base ‘ 𝑌 ) |
34 |
15 1 2 3 4 33 23 9 14 7
|
mat2pmatlin |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ∧ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) ∧ 𝑂 ∈ 𝐵 ) ) → ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) ) = ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ) · ( 𝑇 ‘ 𝑂 ) ) ) |
35 |
18 25 32 34
|
syl12anc |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) ) = ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ) · ( 𝑇 ‘ 𝑂 ) ) ) |
36 |
15 1 2 3 4 33
|
mat2pmatrhm |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑇 ∈ ( 𝐴 RingHom 𝑌 ) ) |
37 |
13 8
|
rhm1 |
⊢ ( 𝑇 ∈ ( 𝐴 RingHom 𝑌 ) → ( 𝑇 ‘ 𝑂 ) = 1 ) |
38 |
17 36 37
|
3syl |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑇 ‘ 𝑂 ) = 1 ) |
39 |
38
|
adantr |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( 𝑇 ‘ 𝑂 ) = 1 ) |
40 |
39
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ) · ( 𝑇 ‘ 𝑂 ) ) = ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ) · 1 ) ) |
41 |
35 40
|
eqtr2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ) · 1 ) = ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) ) ) |
42 |
41
|
oveq2d |
⊢ ( ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) ∧ 𝑛 ∈ ℕ0 ) → ( ( 𝑛 ↑ 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ) · 1 ) ) = ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) ) ) ) |
43 |
42
|
mpteq2dva |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ) · 1 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) ) ) ) ) |
44 |
43
|
oveq2d |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( ( 𝑈 ‘ ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ) · 1 ) ) ) ) = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) ) ) ) ) ) |
45 |
16 44
|
eqtrd |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → 𝐻 = ( 𝑌 Σg ( 𝑛 ∈ ℕ0 ↦ ( ( 𝑛 ↑ 𝑋 ) · ( 𝑇 ‘ ( ( ( coe1 ‘ 𝐾 ) ‘ 𝑛 ) ∗ 𝑂 ) ) ) ) ) ) |